Feng Xiong, Jintao Wang, Guohua Zhang, Xueming Shi, Hong Zheng, Junjie Hu
{"title":"基于物体检测和图像分割的岩心 RQD 智能算法,用于抑制噪声和振动","authors":"Feng Xiong, Jintao Wang, Guohua Zhang, Xueming Shi, Hong Zheng, Junjie Hu","doi":"10.1155/2024/3599911","DOIUrl":null,"url":null,"abstract":"In the construction of the civil engineering infrastructure, the noise and vibration are affected by the geological conditions, adopting specific construction techniques based on the geological conditions is of great significance in suppressing the noise and vibration caused by the construction. To classify and evaluate the rock mass quality, the rock quality designation (RQD) is adopted widely in the geological and mining engineering. Traditionally, to obtain RQD, lengths of drilling core pieces are measured and RQD is calculated manually, which is labor-expensive and time-consuming. With the development of the computational power, the image treatment driven by the computer vision creates a potential approach to obtain RQD automatically. In the present work, the image treatment process with the aid of the object detection and the image segmentation is adopted to obtain RQD automatically, based on the similarity of features such as color and texture, the segment anything model is adopted to detect the rock cores in the image, then, the YOLOv8 algorithm is adopted to train the model, and the gap features of the rock chip segments are extracted for segmentation of different rock core segments. To test the performance of the proposed approach, 10 boreholes from Shapingba Railway Comprehensive Reconstruction Project are adopted to conduct the case study. Compared to the traditional manual approach, RQD obtained by the proposed approach is relatively accurate and obviously efficient, namely, the average error is less than 5% and the time consumed is less than 70%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Algorithm for Rock Core RQD Based on Object Detection and Image Segmentation to Suppress Noise and Vibration\",\"authors\":\"Feng Xiong, Jintao Wang, Guohua Zhang, Xueming Shi, Hong Zheng, Junjie Hu\",\"doi\":\"10.1155/2024/3599911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the construction of the civil engineering infrastructure, the noise and vibration are affected by the geological conditions, adopting specific construction techniques based on the geological conditions is of great significance in suppressing the noise and vibration caused by the construction. To classify and evaluate the rock mass quality, the rock quality designation (RQD) is adopted widely in the geological and mining engineering. Traditionally, to obtain RQD, lengths of drilling core pieces are measured and RQD is calculated manually, which is labor-expensive and time-consuming. With the development of the computational power, the image treatment driven by the computer vision creates a potential approach to obtain RQD automatically. In the present work, the image treatment process with the aid of the object detection and the image segmentation is adopted to obtain RQD automatically, based on the similarity of features such as color and texture, the segment anything model is adopted to detect the rock cores in the image, then, the YOLOv8 algorithm is adopted to train the model, and the gap features of the rock chip segments are extracted for segmentation of different rock core segments. To test the performance of the proposed approach, 10 boreholes from Shapingba Railway Comprehensive Reconstruction Project are adopted to conduct the case study. Compared to the traditional manual approach, RQD obtained by the proposed approach is relatively accurate and obviously efficient, namely, the average error is less than 5% and the time consumed is less than 70%.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3599911\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3599911","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Intelligent Algorithm for Rock Core RQD Based on Object Detection and Image Segmentation to Suppress Noise and Vibration
In the construction of the civil engineering infrastructure, the noise and vibration are affected by the geological conditions, adopting specific construction techniques based on the geological conditions is of great significance in suppressing the noise and vibration caused by the construction. To classify and evaluate the rock mass quality, the rock quality designation (RQD) is adopted widely in the geological and mining engineering. Traditionally, to obtain RQD, lengths of drilling core pieces are measured and RQD is calculated manually, which is labor-expensive and time-consuming. With the development of the computational power, the image treatment driven by the computer vision creates a potential approach to obtain RQD automatically. In the present work, the image treatment process with the aid of the object detection and the image segmentation is adopted to obtain RQD automatically, based on the similarity of features such as color and texture, the segment anything model is adopted to detect the rock cores in the image, then, the YOLOv8 algorithm is adopted to train the model, and the gap features of the rock chip segments are extracted for segmentation of different rock core segments. To test the performance of the proposed approach, 10 boreholes from Shapingba Railway Comprehensive Reconstruction Project are adopted to conduct the case study. Compared to the traditional manual approach, RQD obtained by the proposed approach is relatively accurate and obviously efficient, namely, the average error is less than 5% and the time consumed is less than 70%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.