阿贝尔群中的最大无和集合

IF 0.7 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Vahe Sargsyan
{"title":"阿贝尔群中的最大无和集合","authors":"Vahe Sargsyan","doi":"10.1134/s1054661824010188","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(G\\)</span> be an Abelian group of order <i>n</i>, let <span>\\(k \\geqslant 2\\)</span> be an integer, and <span>\\({{A}_{1}}, \\ldots ,{{A}_{k}}\\)</span> be nonempty subsets of <span>\\(G\\)</span>. The collection <span>\\(\\left( {{{A}_{1}}, \\ldots ,{{A}_{k}}} \\right)\\)</span> is called <span>\\(k\\)</span>-sum-free (abbreviated <span>\\(k\\)</span>-<i>SFC</i>) if the equation <span>\\({{x}_{1}} + \\ldots + {{x}_{k}} = 0\\)</span> has no solutions in the collection <span>\\(\\left( {{{A}_{1}}, \\ldots ,{{A}_{k}}} \\right),\\)</span> where <span>\\({{x}_{1}} \\in {{A}_{1}}\\)</span>, …, <span>\\({{x}_{k}} \\in {{A}_{k}}\\)</span>. The family of <span>\\(k\\)</span>-<i>SFC</i> in <span>\\(G\\)</span> will be denoted by <span>\\(SF{{C}_{k}}\\left( G \\right)\\)</span>. The collection <span>\\(\\left( {{{A}_{1}}, \\ldots ,{{A}_{k}}} \\right) \\in SF{{C}_{k}}\\left( G \\right)\\)</span> is called maximal by capacity if it is maximal by the sum of <span>\\(\\left| {{{A}_{1}}} \\right| + \\ldots + \\left| {{{A}_{k}}} \\right|\\)</span>, and maximal by inclusion if for any <span>\\(i \\in \\left\\{ {1,...,k} \\right\\}\\)</span> and <span>\\(x \\in G{\\kern 1pt} {{\\backslash }}{\\kern 1pt} {{A}_{i}},\\)</span> the collection <span>\\(\\left( {{{A}_{1}},...,{{A}_{{i - 1}}},{{A}_{i}} \\cup \\left\\{ x \\right\\},{{A}_{{i + 1}}},...,{{A}_{k}}} \\right)\\)</span> <span>\\( \\notin \\)</span> <span>\\(SF{{C}_{k}}\\left( G \\right).\\)</span> Suppose <span>\\({{\\varrho }_{k}}\\left( G \\right) = \\left| {{{A}_{1}}} \\right| + \\ldots + \\left| {{{A}_{k}}} \\right|.\\)</span> In this work, we study the problem of the maximal value of <span>\\({{\\varrho }_{k}}\\left( G \\right)\\)</span>. In particular, the maximal value of <span>\\({{\\varrho }_{k}}\\left( {{{Z}_{d}}} \\right)\\)</span> for the cyclic group <span>\\({{Z}_{d}}\\)</span> is determined. Upper and lower bounds for <span>\\({{\\varrho }_{k}}\\left( G \\right)\\)</span> are obtained for the Abelian group <span>\\(G.\\)</span> The structure of the maximal <i>k</i>-sum-free collection by capacity (by inclusion) is described for an arbitrary cyclic group.</p>","PeriodicalId":35400,"journal":{"name":"PATTERN RECOGNITION AND IMAGE ANALYSIS","volume":"43 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal k-Sum-Free Collections in an Abelian Group\",\"authors\":\"Vahe Sargsyan\",\"doi\":\"10.1134/s1054661824010188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Let <span>\\\\(G\\\\)</span> be an Abelian group of order <i>n</i>, let <span>\\\\(k \\\\geqslant 2\\\\)</span> be an integer, and <span>\\\\({{A}_{1}}, \\\\ldots ,{{A}_{k}}\\\\)</span> be nonempty subsets of <span>\\\\(G\\\\)</span>. The collection <span>\\\\(\\\\left( {{{A}_{1}}, \\\\ldots ,{{A}_{k}}} \\\\right)\\\\)</span> is called <span>\\\\(k\\\\)</span>-sum-free (abbreviated <span>\\\\(k\\\\)</span>-<i>SFC</i>) if the equation <span>\\\\({{x}_{1}} + \\\\ldots + {{x}_{k}} = 0\\\\)</span> has no solutions in the collection <span>\\\\(\\\\left( {{{A}_{1}}, \\\\ldots ,{{A}_{k}}} \\\\right),\\\\)</span> where <span>\\\\({{x}_{1}} \\\\in {{A}_{1}}\\\\)</span>, …, <span>\\\\({{x}_{k}} \\\\in {{A}_{k}}\\\\)</span>. The family of <span>\\\\(k\\\\)</span>-<i>SFC</i> in <span>\\\\(G\\\\)</span> will be denoted by <span>\\\\(SF{{C}_{k}}\\\\left( G \\\\right)\\\\)</span>. The collection <span>\\\\(\\\\left( {{{A}_{1}}, \\\\ldots ,{{A}_{k}}} \\\\right) \\\\in SF{{C}_{k}}\\\\left( G \\\\right)\\\\)</span> is called maximal by capacity if it is maximal by the sum of <span>\\\\(\\\\left| {{{A}_{1}}} \\\\right| + \\\\ldots + \\\\left| {{{A}_{k}}} \\\\right|\\\\)</span>, and maximal by inclusion if for any <span>\\\\(i \\\\in \\\\left\\\\{ {1,...,k} \\\\right\\\\}\\\\)</span> and <span>\\\\(x \\\\in G{\\\\kern 1pt} {{\\\\backslash }}{\\\\kern 1pt} {{A}_{i}},\\\\)</span> the collection <span>\\\\(\\\\left( {{{A}_{1}},...,{{A}_{{i - 1}}},{{A}_{i}} \\\\cup \\\\left\\\\{ x \\\\right\\\\},{{A}_{{i + 1}}},...,{{A}_{k}}} \\\\right)\\\\)</span> <span>\\\\( \\\\notin \\\\)</span> <span>\\\\(SF{{C}_{k}}\\\\left( G \\\\right).\\\\)</span> Suppose <span>\\\\({{\\\\varrho }_{k}}\\\\left( G \\\\right) = \\\\left| {{{A}_{1}}} \\\\right| + \\\\ldots + \\\\left| {{{A}_{k}}} \\\\right|.\\\\)</span> In this work, we study the problem of the maximal value of <span>\\\\({{\\\\varrho }_{k}}\\\\left( G \\\\right)\\\\)</span>. In particular, the maximal value of <span>\\\\({{\\\\varrho }_{k}}\\\\left( {{{Z}_{d}}} \\\\right)\\\\)</span> for the cyclic group <span>\\\\({{Z}_{d}}\\\\)</span> is determined. Upper and lower bounds for <span>\\\\({{\\\\varrho }_{k}}\\\\left( G \\\\right)\\\\)</span> are obtained for the Abelian group <span>\\\\(G.\\\\)</span> The structure of the maximal <i>k</i>-sum-free collection by capacity (by inclusion) is described for an arbitrary cyclic group.</p>\",\"PeriodicalId\":35400,\"journal\":{\"name\":\"PATTERN RECOGNITION AND IMAGE ANALYSIS\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PATTERN RECOGNITION AND IMAGE ANALYSIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1054661824010188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATTERN RECOGNITION AND IMAGE ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1054661824010188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

AbstractLet \(G\) be an Abelian group of order n, let \(k \geqslant 2\) be an integer, and \({{A}_{1}}, \ldots ,{{A}_{k}}\) be nonempty subsets of \(G\).如果方程 \({{x}_{1}} + \ldots + {{x}_{k}} = 0\) 在集合 \(\left( {{A}_{1}}、\ldots ,{{A}_{k}}} \right),\) where \({{x}_{1}} \in {{A}_{1}}\), ..., \({{x}_{k}} \in {{A}_{k}}\).在 \(G\) 中的\(k\)-SFC 族将用\(SF{{C}_{k}}\left( G\right)\) 表示。如果 SF{{C}_{k}}\left( {{A}_{1}}, \ldots ,{{A}_{k}}} \right) 中的集合 \(\left( {{A}_{1}}, \ldots ,{{A}_{k}}} \right) \)是 \(\left| {{A}_{1}}} \right| + \ldots + \left| {{A}_{k}}} \right|) 的和的最大值,那么这个集合就称为容量最大集合、并且如果对于任何 \(i \in \left\{{1,....,k})和(x 在 G{kern 1pt} {{\backslash }}{{kern 1pt} {{A}_{i}}, \)的集合 \(\left( {{A}_{1}},...,{{A}_{i - 1}}}},{{A}_{i}})\cup \left\{ x \right\},{{A}_{i + 1}}},...,{{A}_{k}}}})。\right)\( \notin\) \(SF{{C}_{k}}}left( G \right).\)Suppose \({{\varrho }_{k}}\left( G \right) = \left| {{{A}_{1}}}\right| + \ldots + \left| {{A}_{k}}}\right|.\)在这项工作中,我们将研究 \({{\varrho }_{k}}\left( G \right)\) 的最大值问题。特别是确定了循环群 \({{Z}_{d}}\) 的 \({{\varrho }_{k}}\left( {{{Z}_{d}}} \right)\) 的最大值。对于阿贝尔群 \(G.\),得到了 \({{\varrho }_{k}}\left( {{{Z}_{d}}} \right)\) 的上界和下界。 对于任意循环群,通过容量(通过包含)描述了最大无 k 和集合的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal k-Sum-Free Collections in an Abelian Group

Abstract

Let \(G\) be an Abelian group of order n, let \(k \geqslant 2\) be an integer, and \({{A}_{1}}, \ldots ,{{A}_{k}}\) be nonempty subsets of \(G\). The collection \(\left( {{{A}_{1}}, \ldots ,{{A}_{k}}} \right)\) is called \(k\)-sum-free (abbreviated \(k\)-SFC) if the equation \({{x}_{1}} + \ldots + {{x}_{k}} = 0\) has no solutions in the collection \(\left( {{{A}_{1}}, \ldots ,{{A}_{k}}} \right),\) where \({{x}_{1}} \in {{A}_{1}}\), …, \({{x}_{k}} \in {{A}_{k}}\). The family of \(k\)-SFC in \(G\) will be denoted by \(SF{{C}_{k}}\left( G \right)\). The collection \(\left( {{{A}_{1}}, \ldots ,{{A}_{k}}} \right) \in SF{{C}_{k}}\left( G \right)\) is called maximal by capacity if it is maximal by the sum of \(\left| {{{A}_{1}}} \right| + \ldots + \left| {{{A}_{k}}} \right|\), and maximal by inclusion if for any \(i \in \left\{ {1,...,k} \right\}\) and \(x \in G{\kern 1pt} {{\backslash }}{\kern 1pt} {{A}_{i}},\) the collection \(\left( {{{A}_{1}},...,{{A}_{{i - 1}}},{{A}_{i}} \cup \left\{ x \right\},{{A}_{{i + 1}}},...,{{A}_{k}}} \right)\) \( \notin \) \(SF{{C}_{k}}\left( G \right).\) Suppose \({{\varrho }_{k}}\left( G \right) = \left| {{{A}_{1}}} \right| + \ldots + \left| {{{A}_{k}}} \right|.\) In this work, we study the problem of the maximal value of \({{\varrho }_{k}}\left( G \right)\). In particular, the maximal value of \({{\varrho }_{k}}\left( {{{Z}_{d}}} \right)\) for the cyclic group \({{Z}_{d}}\) is determined. Upper and lower bounds for \({{\varrho }_{k}}\left( G \right)\) are obtained for the Abelian group \(G.\) The structure of the maximal k-sum-free collection by capacity (by inclusion) is described for an arbitrary cyclic group.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PATTERN RECOGNITION AND IMAGE ANALYSIS
PATTERN RECOGNITION AND IMAGE ANALYSIS Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.80
自引率
20.00%
发文量
80
期刊介绍: The purpose of the journal is to publish high-quality peer-reviewed scientific and technical materials that present the results of fundamental and applied scientific research in the field of image processing, recognition, analysis and understanding, pattern recognition, artificial intelligence, and related fields of theoretical and applied computer science and applied mathematics. The policy of the journal provides for the rapid publication of original scientific articles, analytical reviews, articles of the world''s leading scientists and specialists on the subject of the journal solicited by the editorial board, special thematic issues, proceedings of the world''s leading scientific conferences and seminars, as well as short reports containing new results of fundamental and applied research in the field of mathematical theory and methodology of image analysis, mathematical theory and methodology of image recognition, and mathematical foundations and methodology of artificial intelligence. The journal also publishes articles on the use of the apparatus and methods of the mathematical theory of image analysis and the mathematical theory of image recognition for the development of new information technologies and their supporting software and algorithmic complexes and systems for solving complex and particularly important applied problems. The main scientific areas are the mathematical theory of image analysis and the mathematical theory of pattern recognition. The journal also embraces the problems of analyzing and evaluating poorly formalized, poorly structured, incomplete, contradictory and noisy information, including artificial intelligence, bioinformatics, medical informatics, data mining, big data analysis, machine vision, data representation and modeling, data and knowledge extraction from images, machine learning, forecasting, machine graphics, databases, knowledge bases, medical and technical diagnostics, neural networks, specialized software, specialized computational architectures for information analysis and evaluation, linguistic, psychological, psychophysical, and physiological aspects of image analysis and pattern recognition, applied problems, and related problems. Articles can be submitted either in English or Russian. The English language is preferable. Pattern Recognition and Image Analysis is a hybrid journal that publishes mostly subscription articles that are free of charge for the authors, but also accepts Open Access articles with article processing charges. The journal is one of the top 10 global periodicals on image analysis and pattern recognition and is the only publication on this topic in the Russian Federation, Central and Eastern Europe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信