根据 H&E 全切片图像预测雌激素受体基因表达量

Anvita A. Srinivas, Ronnachai Jaroensri, Ellery Wulczyn, James H. Wren, Elaine E. Thompson, Niels Olson, Fabien Beckers, Melissa Miao, Yun Liu, Po-Hsuan Cameron Chen, David F. Steiner
{"title":"根据 H&E 全切片图像预测雌激素受体基因表达量","authors":"Anvita A. Srinivas, Ronnachai Jaroensri, Ellery Wulczyn, James H. Wren, Elaine E. Thompson, Niels Olson, Fabien Beckers, Melissa Miao, Yun Liu, Po-Hsuan Cameron Chen, David F. Steiner","doi":"10.1101/2024.04.05.24302951","DOIUrl":null,"url":null,"abstract":"Gene expression profiling (GEP) provides valuable information for the care of breast cancer patients. However, the test itself is expensive and can take a long time to process. In contrast, microscopic examination of hematoxylin and eosin (H&amp;E) stained tissue is inexpensive, fast, and integrated into the standard of care. This work explores the possibility of predicting <em>ESR1</em> gene expression from H&amp;E images, and its use in predicting clinical variables and patient outcomes. We utilized a weakly supervised method to train a deep learning model to predict <em>ESR1</em> expression from whole slide images, and achieved 0.57 [95% CI: 0.46, 0.67] Pearson’s correlation with the ground truth value. Our <em>ESR1</em> expression prediction achieved an AUROC of 0.81 [0.74, 0.87] in predicting clinical ER status obtained using an immunohistochemistry staining technique, and a c-index of 0.59 [0.52, 0.65] in predicting progression-free interval for the patients in our cohort. This work further demonstrates the potential to infer gene expression from H&amp;E stained images in a manner that shows meaningful associations with clinical variables. Because obtaining H&amp;E stained images is substantially easier and faster than genetic testing, the capability to derive molecular genetic information from these images may increase access to this type of information for patient risk stratification and provide research insights into molecular-morphological associations.","PeriodicalId":501528,"journal":{"name":"medRxiv - Pathology","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estrogen Receptor Gene Expression Prediction from H&E Whole Slide Images\",\"authors\":\"Anvita A. Srinivas, Ronnachai Jaroensri, Ellery Wulczyn, James H. Wren, Elaine E. Thompson, Niels Olson, Fabien Beckers, Melissa Miao, Yun Liu, Po-Hsuan Cameron Chen, David F. Steiner\",\"doi\":\"10.1101/2024.04.05.24302951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression profiling (GEP) provides valuable information for the care of breast cancer patients. However, the test itself is expensive and can take a long time to process. In contrast, microscopic examination of hematoxylin and eosin (H&amp;E) stained tissue is inexpensive, fast, and integrated into the standard of care. This work explores the possibility of predicting <em>ESR1</em> gene expression from H&amp;E images, and its use in predicting clinical variables and patient outcomes. We utilized a weakly supervised method to train a deep learning model to predict <em>ESR1</em> expression from whole slide images, and achieved 0.57 [95% CI: 0.46, 0.67] Pearson’s correlation with the ground truth value. Our <em>ESR1</em> expression prediction achieved an AUROC of 0.81 [0.74, 0.87] in predicting clinical ER status obtained using an immunohistochemistry staining technique, and a c-index of 0.59 [0.52, 0.65] in predicting progression-free interval for the patients in our cohort. This work further demonstrates the potential to infer gene expression from H&amp;E stained images in a manner that shows meaningful associations with clinical variables. Because obtaining H&amp;E stained images is substantially easier and faster than genetic testing, the capability to derive molecular genetic information from these images may increase access to this type of information for patient risk stratification and provide research insights into molecular-morphological associations.\",\"PeriodicalId\":501528,\"journal\":{\"name\":\"medRxiv - Pathology\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.05.24302951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.05.24302951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因表达谱(GEP)为乳腺癌患者的治疗提供了宝贵的信息。然而,检测本身价格昂贵,处理时间长。相比之下,对苏木精和伊红(H&E)染色组织进行显微镜检查既便宜又快捷,而且已被纳入治疗标准。这项研究探讨了从 H&E 图像预测 ESR1 基因表达的可能性,以及它在预测临床变量和患者预后中的应用。我们利用弱监督方法训练了一个深度学习模型,以预测整张切片图像中 ESR1 的表达,结果与地面实况值的皮尔逊相关性达到了 0.57 [95% CI: 0.46, 0.67]。我们的 ESR1 表达预测结果在预测使用免疫组化染色技术获得的临床 ER 状态时的 AUROC 为 0.81 [0.74, 0.87],在预测队列中患者的无进展间期时的 c 指数为 0.59 [0.52, 0.65]。这项工作进一步证明了从H&E染色图像中推断基因表达的潜力,并显示出与临床变量之间有意义的关联。由于获取 H&E 染色图像比基因检测要容易得多,也快得多,因此从这些图像中推导出分子遗传信息的能力可能会增加获取此类信息的机会,从而对患者进行风险分层,并为分子形态学关联提供研究见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estrogen Receptor Gene Expression Prediction from H&E Whole Slide Images
Gene expression profiling (GEP) provides valuable information for the care of breast cancer patients. However, the test itself is expensive and can take a long time to process. In contrast, microscopic examination of hematoxylin and eosin (H&E) stained tissue is inexpensive, fast, and integrated into the standard of care. This work explores the possibility of predicting ESR1 gene expression from H&E images, and its use in predicting clinical variables and patient outcomes. We utilized a weakly supervised method to train a deep learning model to predict ESR1 expression from whole slide images, and achieved 0.57 [95% CI: 0.46, 0.67] Pearson’s correlation with the ground truth value. Our ESR1 expression prediction achieved an AUROC of 0.81 [0.74, 0.87] in predicting clinical ER status obtained using an immunohistochemistry staining technique, and a c-index of 0.59 [0.52, 0.65] in predicting progression-free interval for the patients in our cohort. This work further demonstrates the potential to infer gene expression from H&E stained images in a manner that shows meaningful associations with clinical variables. Because obtaining H&E stained images is substantially easier and faster than genetic testing, the capability to derive molecular genetic information from these images may increase access to this type of information for patient risk stratification and provide research insights into molecular-morphological associations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信