网络物理元宇宙系统的质量意识和基于混淆的数据收集方案

IF 5.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jianheng Tang, Kejia Fan, Wenjie Yin, Shihao Yang, Yajiang Huang, Anfeng Liu, Neal N. Xiong, Mianxiong Dong, Tian Wang, Shaobo Zhang
{"title":"网络物理元宇宙系统的质量意识和基于混淆的数据收集方案","authors":"Jianheng Tang, Kejia Fan, Wenjie Yin, Shihao Yang, Yajiang Huang, Anfeng Liu, Neal N. Xiong, Mianxiong Dong, Tian Wang, Shaobo Zhang","doi":"10.1145/3659582","DOIUrl":null,"url":null,"abstract":"<p>In pursuit of an immersive virtual experience within the Cyber-Physical Metaverse Systems (CPMS), the construction of Avatars often requires a significant amount of real-world data. Mobile Crowd Sensing (MCS) has emerged as an efficient method for collecting data for CPMS. While progress has been made in protecting the privacy of workers, little attention has been given to safeguarding task privacy, potentially exposing the intentions of applications and posing risks to the development of the Metaverse. Additionally, existing privacy protection schemes hinder the exchange of information among entities, inadvertently compromising the quality of the collected data. To this end, we propose a Quality-aware and Obfuscation-based Task Privacy-Preserving (QOTPP) scheme, which protects task privacy and enhances data quality without third-party involvement. The QOTPP scheme initially employs the insight of “showing the fake, and hiding the real” by employing differential privacy techniques to create fake tasks and conceal genuine ones. Additionally, we introduce a two-tier truth discovery mechanism using Deep Matrix Factorization (DMF) to efficiently identify high-quality workers. Furthermore, we propose a Combinatorial Multi-Armed Bandit (CMAB)-based worker incentive and selection mechanism to improve the quality of data collection. Theoretical analysis confirms that our QOTPP scheme satisfies essential properties such as truthfulness, individual rationality, and ϵ-differential privacy. Extensive simulation experiments validate the state-of-the-art performance achieved by QOTPP.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"63 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quality-Aware and Obfuscation-Based Data Collection Scheme for Cyber-Physical Metaverse Systems\",\"authors\":\"Jianheng Tang, Kejia Fan, Wenjie Yin, Shihao Yang, Yajiang Huang, Anfeng Liu, Neal N. Xiong, Mianxiong Dong, Tian Wang, Shaobo Zhang\",\"doi\":\"10.1145/3659582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In pursuit of an immersive virtual experience within the Cyber-Physical Metaverse Systems (CPMS), the construction of Avatars often requires a significant amount of real-world data. Mobile Crowd Sensing (MCS) has emerged as an efficient method for collecting data for CPMS. While progress has been made in protecting the privacy of workers, little attention has been given to safeguarding task privacy, potentially exposing the intentions of applications and posing risks to the development of the Metaverse. Additionally, existing privacy protection schemes hinder the exchange of information among entities, inadvertently compromising the quality of the collected data. To this end, we propose a Quality-aware and Obfuscation-based Task Privacy-Preserving (QOTPP) scheme, which protects task privacy and enhances data quality without third-party involvement. The QOTPP scheme initially employs the insight of “showing the fake, and hiding the real” by employing differential privacy techniques to create fake tasks and conceal genuine ones. Additionally, we introduce a two-tier truth discovery mechanism using Deep Matrix Factorization (DMF) to efficiently identify high-quality workers. Furthermore, we propose a Combinatorial Multi-Armed Bandit (CMAB)-based worker incentive and selection mechanism to improve the quality of data collection. Theoretical analysis confirms that our QOTPP scheme satisfies essential properties such as truthfulness, individual rationality, and ϵ-differential privacy. Extensive simulation experiments validate the state-of-the-art performance achieved by QOTPP.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3659582\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659582","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了在网络物理元宇宙系统(CPMS)中获得身临其境的虚拟体验,"头像 "的构建往往需要大量的真实世界数据。移动人群感应(MCS)已成为为 CPMS 收集数据的有效方法。虽然在保护工作人员隐私方面取得了进展,但在保护任务隐私方面却关注甚少,这可能会暴露应用程序的意图,并给元宇宙的发展带来风险。此外,现有的隐私保护方案阻碍了实体间的信息交流,无意中损害了所收集数据的质量。为此,我们提出了一种基于质量感知和混淆的任务隐私保护(QOTPP)方案,它能在没有第三方参与的情况下保护任务隐私并提高数据质量。QOTPP 方案最初采用了 "以假乱真 "的观点,利用差分隐私技术创建虚假任务并隐藏真实任务。此外,我们还利用深度矩阵因式分解(DMF)引入了双层真相发现机制,以有效识别高质量的工人。此外,我们还提出了一种基于组合多臂匪徒(CMAB)的工人激励和选择机制,以提高数据收集的质量。理论分析证实,我们的 QOTPP 方案满足真实性、个体理性和ϵ-差分隐私等基本属性。广泛的模拟实验验证了 QOTPP 所达到的一流性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Quality-Aware and Obfuscation-Based Data Collection Scheme for Cyber-Physical Metaverse Systems

In pursuit of an immersive virtual experience within the Cyber-Physical Metaverse Systems (CPMS), the construction of Avatars often requires a significant amount of real-world data. Mobile Crowd Sensing (MCS) has emerged as an efficient method for collecting data for CPMS. While progress has been made in protecting the privacy of workers, little attention has been given to safeguarding task privacy, potentially exposing the intentions of applications and posing risks to the development of the Metaverse. Additionally, existing privacy protection schemes hinder the exchange of information among entities, inadvertently compromising the quality of the collected data. To this end, we propose a Quality-aware and Obfuscation-based Task Privacy-Preserving (QOTPP) scheme, which protects task privacy and enhances data quality without third-party involvement. The QOTPP scheme initially employs the insight of “showing the fake, and hiding the real” by employing differential privacy techniques to create fake tasks and conceal genuine ones. Additionally, we introduce a two-tier truth discovery mechanism using Deep Matrix Factorization (DMF) to efficiently identify high-quality workers. Furthermore, we propose a Combinatorial Multi-Armed Bandit (CMAB)-based worker incentive and selection mechanism to improve the quality of data collection. Theoretical analysis confirms that our QOTPP scheme satisfies essential properties such as truthfulness, individual rationality, and ϵ-differential privacy. Extensive simulation experiments validate the state-of-the-art performance achieved by QOTPP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
5.90%
发文量
285
审稿时长
7.5 months
期刊介绍: The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome. TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信