Agathe Dumont, Antoine Duparc, Philippe S Sabarros, David M Kaplan
{"title":"使用 Δ 方法模拟热带金枪鱼围网捕捞浮体副渔获物的丰度","authors":"Agathe Dumont, Antoine Duparc, Philippe S Sabarros, David M Kaplan","doi":"10.1093/icesjms/fsae043","DOIUrl":null,"url":null,"abstract":"Bycatch rates are essential to estimating fishery impacts and making management decisions, but data on bycatch are often limited. Tropical tuna purse seine (PS) fisheries catch numerous bycatch species, including vulnerable silky sharks. Even if bycatch proportion is relatively low, impacts on pelagic ecosystems may be important due to the large size of these fisheries. Partial observer coverage of bycatch is a major impediment to assessing impacts. Here we develop a generic Δ modeling approach for predicting catch of four major bycatch species, including silky sharks, in floating object-associated fishing sets of the French Indian Ocean PS fleet from 2011 to 2018 based on logbook and observer data. Cross-validation and variable selection are used to identify optimal models consisting of a random forest model for presence–absence and a negative binomial general-additive model for abundance when present. Though models explain small to moderate amounts of variance (5–15%), they outperform a simpler approach commonly used for reporting, and they allow us to estimate total annual bycatch for the four species with robust estimates of uncertainty. Interestingly, uncertainty relative to mean catch is lower for top predators than forage species, consistent with these species having similar behavior and ecological niches to tunas.","PeriodicalId":51072,"journal":{"name":"ICES Journal of Marine Science","volume":"169 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling bycatch abundance in tropical tuna purse seine fisheries on floating objects using the Δ method\",\"authors\":\"Agathe Dumont, Antoine Duparc, Philippe S Sabarros, David M Kaplan\",\"doi\":\"10.1093/icesjms/fsae043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bycatch rates are essential to estimating fishery impacts and making management decisions, but data on bycatch are often limited. Tropical tuna purse seine (PS) fisheries catch numerous bycatch species, including vulnerable silky sharks. Even if bycatch proportion is relatively low, impacts on pelagic ecosystems may be important due to the large size of these fisheries. Partial observer coverage of bycatch is a major impediment to assessing impacts. Here we develop a generic Δ modeling approach for predicting catch of four major bycatch species, including silky sharks, in floating object-associated fishing sets of the French Indian Ocean PS fleet from 2011 to 2018 based on logbook and observer data. Cross-validation and variable selection are used to identify optimal models consisting of a random forest model for presence–absence and a negative binomial general-additive model for abundance when present. Though models explain small to moderate amounts of variance (5–15%), they outperform a simpler approach commonly used for reporting, and they allow us to estimate total annual bycatch for the four species with robust estimates of uncertainty. Interestingly, uncertainty relative to mean catch is lower for top predators than forage species, consistent with these species having similar behavior and ecological niches to tunas.\",\"PeriodicalId\":51072,\"journal\":{\"name\":\"ICES Journal of Marine Science\",\"volume\":\"169 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICES Journal of Marine Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/icesjms/fsae043\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICES Journal of Marine Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/icesjms/fsae043","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Modeling bycatch abundance in tropical tuna purse seine fisheries on floating objects using the Δ method
Bycatch rates are essential to estimating fishery impacts and making management decisions, but data on bycatch are often limited. Tropical tuna purse seine (PS) fisheries catch numerous bycatch species, including vulnerable silky sharks. Even if bycatch proportion is relatively low, impacts on pelagic ecosystems may be important due to the large size of these fisheries. Partial observer coverage of bycatch is a major impediment to assessing impacts. Here we develop a generic Δ modeling approach for predicting catch of four major bycatch species, including silky sharks, in floating object-associated fishing sets of the French Indian Ocean PS fleet from 2011 to 2018 based on logbook and observer data. Cross-validation and variable selection are used to identify optimal models consisting of a random forest model for presence–absence and a negative binomial general-additive model for abundance when present. Though models explain small to moderate amounts of variance (5–15%), they outperform a simpler approach commonly used for reporting, and they allow us to estimate total annual bycatch for the four species with robust estimates of uncertainty. Interestingly, uncertainty relative to mean catch is lower for top predators than forage species, consistent with these species having similar behavior and ecological niches to tunas.
期刊介绍:
The ICES Journal of Marine Science publishes original articles, opinion essays (“Food for Thought”), visions for the future (“Quo Vadimus”), and critical reviews that contribute to our scientific understanding of marine systems and the impact of human activities on them. The Journal also serves as a foundation for scientific advice across the broad spectrum of management and conservation issues related to the marine environment. Oceanography (e.g. productivity-determining processes), marine habitats, living resources, and related topics constitute the key elements of papers considered for publication. This includes economic, social, and public administration studies to the extent that they are directly related to management of the seas and are of general interest to marine scientists. Integrated studies that bridge gaps between traditional disciplines are particularly welcome.