RSUIGM:利用图像形成模型生成逼真的合成水下图像

IF 5.2 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Chaitra Desai, Sujay Benur, Ujwala Patil, Uma Mudenagudi
{"title":"RSUIGM:利用图像形成模型生成逼真的合成水下图像","authors":"Chaitra Desai, Sujay Benur, Ujwala Patil, Uma Mudenagudi","doi":"10.1145/3656473","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose to synthesize realistic underwater images with a novel image formation model, considering both downwelling depth and line of sight (LOS) distance as cue and call it as Realistic Synthetic Underwater Image Generation Model, RSUIGM. The light interaction in the ocean is a complex process and demands specific modeling of direct and backscattering phenomenon to capture the degradations. Most of the image formation models rely on complex radiative transfer models and in-situ measurements for synthesizing and restoration of underwater images. Typical image formation models consider only line of sight distance <i>z</i> and ignore downwelling depth <i>d</i> in the estimation of effect of direct light scattering. We derive the dependencies of downwelling irradiance in direct light estimation for generation of synthetic underwater images unlike state-of-the-art image formation models. We propose to incorporate the derived downwelling irradiance in estimation of direct light scattering for modeling the image formation process and generate realistic synthetic underwater images with the proposed RSUIGM, and name it as <i>RSUIGM dataset</i>. We demonstrate the effectiveness of the proposed RSUIGM by using RSUIGM dataset in training deep learning based restoration methods. We compare the quality of restored images with state-of-the-art methods using benchmark real underwater image datasets and achieve improved results. In addition, we validate the distribution of realistic synthetic underwater images versus real underwater images both qualitatively and quantitatively. The proposed RSUIGM dataset is available here.\n</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"1 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RSUIGM: Realistic Synthetic Underwater Image Generation with Image Formation Model\",\"authors\":\"Chaitra Desai, Sujay Benur, Ujwala Patil, Uma Mudenagudi\",\"doi\":\"10.1145/3656473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose to synthesize realistic underwater images with a novel image formation model, considering both downwelling depth and line of sight (LOS) distance as cue and call it as Realistic Synthetic Underwater Image Generation Model, RSUIGM. The light interaction in the ocean is a complex process and demands specific modeling of direct and backscattering phenomenon to capture the degradations. Most of the image formation models rely on complex radiative transfer models and in-situ measurements for synthesizing and restoration of underwater images. Typical image formation models consider only line of sight distance <i>z</i> and ignore downwelling depth <i>d</i> in the estimation of effect of direct light scattering. We derive the dependencies of downwelling irradiance in direct light estimation for generation of synthetic underwater images unlike state-of-the-art image formation models. We propose to incorporate the derived downwelling irradiance in estimation of direct light scattering for modeling the image formation process and generate realistic synthetic underwater images with the proposed RSUIGM, and name it as <i>RSUIGM dataset</i>. We demonstrate the effectiveness of the proposed RSUIGM by using RSUIGM dataset in training deep learning based restoration methods. We compare the quality of restored images with state-of-the-art methods using benchmark real underwater image datasets and achieve improved results. In addition, we validate the distribution of realistic synthetic underwater images versus real underwater images both qualitatively and quantitatively. The proposed RSUIGM dataset is available here.\\n</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656473\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656473","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出用一种新颖的图像形成模型合成逼真的水下图像,该模型同时考虑了下沉深度和视线(LOS)距离,并将其称为 "逼真合成水下图像生成模型"(Realistic Synthetic Underwater Image Generation Model,RSUIGM)。海洋中的光相互作用是一个复杂的过程,需要对直接散射和反向散射现象进行具体建模,以捕捉衰减现象。大多数图像生成模型都依赖于复杂的辐射传递模型和现场测量来合成和还原水下图像。典型的图像形成模型在估算直接光散射的影响时,只考虑视线距离 z,而忽略了下沉深度 d。与最先进的图像形成模型不同的是,我们在生成合成水下图像的直射光估算中推导出了下沉辐照度的依赖关系。我们建议将推导出的下沉辐照度纳入直射光散射的估算中,以模拟图像形成过程,并利用所提出的 RSUIGM 生成逼真的合成水下图像,并将其命名为 RSUIGM 数据集。我们利用 RSUIGM 数据集训练基于深度学习的修复方法,证明了所提出的 RSUIGM 的有效性。我们使用基准真实水下图像数据集,将修复图像的质量与最先进的方法进行了比较,并取得了更好的结果。此外,我们还从定性和定量两方面验证了现实合成水下图像与真实水下图像的分布情况。建议的 RSUIGM 数据集可在此处获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RSUIGM: Realistic Synthetic Underwater Image Generation with Image Formation Model

In this paper, we propose to synthesize realistic underwater images with a novel image formation model, considering both downwelling depth and line of sight (LOS) distance as cue and call it as Realistic Synthetic Underwater Image Generation Model, RSUIGM. The light interaction in the ocean is a complex process and demands specific modeling of direct and backscattering phenomenon to capture the degradations. Most of the image formation models rely on complex radiative transfer models and in-situ measurements for synthesizing and restoration of underwater images. Typical image formation models consider only line of sight distance z and ignore downwelling depth d in the estimation of effect of direct light scattering. We derive the dependencies of downwelling irradiance in direct light estimation for generation of synthetic underwater images unlike state-of-the-art image formation models. We propose to incorporate the derived downwelling irradiance in estimation of direct light scattering for modeling the image formation process and generate realistic synthetic underwater images with the proposed RSUIGM, and name it as RSUIGM dataset. We demonstrate the effectiveness of the proposed RSUIGM by using RSUIGM dataset in training deep learning based restoration methods. We compare the quality of restored images with state-of-the-art methods using benchmark real underwater image datasets and achieve improved results. In addition, we validate the distribution of realistic synthetic underwater images versus real underwater images both qualitatively and quantitatively. The proposed RSUIGM dataset is available here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
5.90%
发文量
285
审稿时长
7.5 months
期刊介绍: The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome. TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信