{"title":"入侵检测系统的经验增强:基于遗传算法的超参数调整和混合特征选择的综合方法","authors":"Halit Bakır, Özlem Ceviz","doi":"10.1007/s13369-024-08949-z","DOIUrl":null,"url":null,"abstract":"<p>Machine learning-based IDSs have demonstrated promising outcomes in identifying and mitigating security threats within IoT networks. However, the efficacy of such systems is contingent on various hyperparameters, necessitating optimization to elevate their performance. This paper introduces a comprehensive empirical and quantitative exploration aimed at enhancing intrusion detection systems (IDSs). The study capitalizes on a genetic algorithm-based hyperparameter tuning mechanism and a pioneering hybrid feature selection approach to systematically investigate incremental performance improvements in IDS. Specifically, our work proposes a machine learning-based IDS approach tailored for detecting attacks in IoT environments. To achieve this, we introduce a hybrid feature selection method designed to identify the most salient features for the task. Additionally, we employed the genetic algorithm (GA) to fine-tune hyperparameters of multiple machine learning models, ensuring their accuracy in detecting attacks. We commence by evaluating the default hyperparameters of these models on the CICIDS2017 dataset, followed by rigorous testing of the same algorithms post-optimization through GA. Through a series of experiments, we scrutinize the impact of combining feature selection methods with hyperparameter tuning approaches. The outcomes unequivocally demonstrate the potential of hyperparameter optimization in enhancing the accuracy and efficiency of machine learning-based IDS systems for IoT networks. The empirical nature of our research method provides a meticulous analysis of the efficacy of the proposed techniques through systematic experimentation and quantitative evaluation. Consolidated in a unified manner, the results underscore the step-by-step enhancement of IDS performance, especially in terms of detection time, substantiating the efficacy of our approach in real-world scenarios.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Enhancement of Intrusion Detection Systems: A Comprehensive Approach with Genetic Algorithm-based Hyperparameter Tuning and Hybrid Feature Selection\",\"authors\":\"Halit Bakır, Özlem Ceviz\",\"doi\":\"10.1007/s13369-024-08949-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Machine learning-based IDSs have demonstrated promising outcomes in identifying and mitigating security threats within IoT networks. However, the efficacy of such systems is contingent on various hyperparameters, necessitating optimization to elevate their performance. This paper introduces a comprehensive empirical and quantitative exploration aimed at enhancing intrusion detection systems (IDSs). The study capitalizes on a genetic algorithm-based hyperparameter tuning mechanism and a pioneering hybrid feature selection approach to systematically investigate incremental performance improvements in IDS. Specifically, our work proposes a machine learning-based IDS approach tailored for detecting attacks in IoT environments. To achieve this, we introduce a hybrid feature selection method designed to identify the most salient features for the task. Additionally, we employed the genetic algorithm (GA) to fine-tune hyperparameters of multiple machine learning models, ensuring their accuracy in detecting attacks. We commence by evaluating the default hyperparameters of these models on the CICIDS2017 dataset, followed by rigorous testing of the same algorithms post-optimization through GA. Through a series of experiments, we scrutinize the impact of combining feature selection methods with hyperparameter tuning approaches. The outcomes unequivocally demonstrate the potential of hyperparameter optimization in enhancing the accuracy and efficiency of machine learning-based IDS systems for IoT networks. The empirical nature of our research method provides a meticulous analysis of the efficacy of the proposed techniques through systematic experimentation and quantitative evaluation. Consolidated in a unified manner, the results underscore the step-by-step enhancement of IDS performance, especially in terms of detection time, substantiating the efficacy of our approach in real-world scenarios.</p>\",\"PeriodicalId\":8109,\"journal\":{\"name\":\"Arabian Journal for Science and Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal for Science and Engineering\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s13369-024-08949-z\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-08949-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
Empirical Enhancement of Intrusion Detection Systems: A Comprehensive Approach with Genetic Algorithm-based Hyperparameter Tuning and Hybrid Feature Selection
Machine learning-based IDSs have demonstrated promising outcomes in identifying and mitigating security threats within IoT networks. However, the efficacy of such systems is contingent on various hyperparameters, necessitating optimization to elevate their performance. This paper introduces a comprehensive empirical and quantitative exploration aimed at enhancing intrusion detection systems (IDSs). The study capitalizes on a genetic algorithm-based hyperparameter tuning mechanism and a pioneering hybrid feature selection approach to systematically investigate incremental performance improvements in IDS. Specifically, our work proposes a machine learning-based IDS approach tailored for detecting attacks in IoT environments. To achieve this, we introduce a hybrid feature selection method designed to identify the most salient features for the task. Additionally, we employed the genetic algorithm (GA) to fine-tune hyperparameters of multiple machine learning models, ensuring their accuracy in detecting attacks. We commence by evaluating the default hyperparameters of these models on the CICIDS2017 dataset, followed by rigorous testing of the same algorithms post-optimization through GA. Through a series of experiments, we scrutinize the impact of combining feature selection methods with hyperparameter tuning approaches. The outcomes unequivocally demonstrate the potential of hyperparameter optimization in enhancing the accuracy and efficiency of machine learning-based IDS systems for IoT networks. The empirical nature of our research method provides a meticulous analysis of the efficacy of the proposed techniques through systematic experimentation and quantitative evaluation. Consolidated in a unified manner, the results underscore the step-by-step enhancement of IDS performance, especially in terms of detection time, substantiating the efficacy of our approach in real-world scenarios.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.