{"title":"调查两种海胆(Tripneustes gratilla 和 Toxopneustes pileolus)的产卵时间","authors":"Shih-jie Lin, Chia-Hsuan Hsu, Keryea Soong","doi":"10.1111/maec.12802","DOIUrl":null,"url":null,"abstract":"<p>Many marine organisms broadcast gametes for external fertilization, thus conspecifics need to concentrate the time of gamete release through synchronization with environmental factors. We investigated the timing of spawning in two sea urchin species, <i>Tripneustes gratilla</i> and <i>Toxopneustes pileolus</i>, by assessing the spawning potential of individuals using both surveys and experiments in southern Taiwan from March to November 2010. We developed a new method to observe the spawning potential without sacrificing any individuals, defining those individuals-initiated spawning within 30 min after 10 s of exposure to air as having the spawning potential. We discovered that the percentage of individuals with spawning potential, that is, the spawning ratios of the population, varied greatly from 0% to 80% in <i>To. pileolus</i> and from 0% to 50% in <i>Tr. gratilla</i> within the reproductive seasons. We evaluated the possibility of a lunar/semilunar rhythm of spawning ratios of the population and tested three environmental factors, that is, light intensity, tide, and temperature that could potentially affect the spawning potential of the sea urchins by experiments. Individuals with spawning potential were neither randomly nor evenly distributed among days but were aggregated on certain days; however, no lunar/semilunar rhythm of the spawning ratios was detected within the reproductive season. The possible role of the tidal factor within a day was not found in experiments in either species. However, when water temperature was >27°C in our surveys, significantly higher spawning ratios were observed in <i>To. pileolus</i>, but not in <i>Tr. gratilla</i> in the reproductive season. A further temperature experiment in <i>To. pileolus</i> supported the positive role of high temperature on the spawning ratios of individuals. In addition, <i>To. pileolus</i> was more likely to spawn during the day than at night, and the light/dark experiments suggested that the spawning potential was controlled by an endogenous biological clock rather than by the ambient light conditions directly. The lack of rhythmic pattern and yet concentrated spawning of these sea urchins may be adaptive to avoid predation.</p>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"45 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the timing of spawning of two sea urchins (Tripneustes gratilla and Toxopneustes pileolus)\",\"authors\":\"Shih-jie Lin, Chia-Hsuan Hsu, Keryea Soong\",\"doi\":\"10.1111/maec.12802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many marine organisms broadcast gametes for external fertilization, thus conspecifics need to concentrate the time of gamete release through synchronization with environmental factors. We investigated the timing of spawning in two sea urchin species, <i>Tripneustes gratilla</i> and <i>Toxopneustes pileolus</i>, by assessing the spawning potential of individuals using both surveys and experiments in southern Taiwan from March to November 2010. We developed a new method to observe the spawning potential without sacrificing any individuals, defining those individuals-initiated spawning within 30 min after 10 s of exposure to air as having the spawning potential. We discovered that the percentage of individuals with spawning potential, that is, the spawning ratios of the population, varied greatly from 0% to 80% in <i>To. pileolus</i> and from 0% to 50% in <i>Tr. gratilla</i> within the reproductive seasons. We evaluated the possibility of a lunar/semilunar rhythm of spawning ratios of the population and tested three environmental factors, that is, light intensity, tide, and temperature that could potentially affect the spawning potential of the sea urchins by experiments. Individuals with spawning potential were neither randomly nor evenly distributed among days but were aggregated on certain days; however, no lunar/semilunar rhythm of the spawning ratios was detected within the reproductive season. The possible role of the tidal factor within a day was not found in experiments in either species. However, when water temperature was >27°C in our surveys, significantly higher spawning ratios were observed in <i>To. pileolus</i>, but not in <i>Tr. gratilla</i> in the reproductive season. A further temperature experiment in <i>To. pileolus</i> supported the positive role of high temperature on the spawning ratios of individuals. In addition, <i>To. pileolus</i> was more likely to spawn during the day than at night, and the light/dark experiments suggested that the spawning potential was controlled by an endogenous biological clock rather than by the ambient light conditions directly. The lack of rhythmic pattern and yet concentrated spawning of these sea urchins may be adaptive to avoid predation.</p>\",\"PeriodicalId\":49883,\"journal\":{\"name\":\"Marine Ecology-An Evolutionary Perspective\",\"volume\":\"45 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Ecology-An Evolutionary Perspective\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maec.12802\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.12802","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Investigating the timing of spawning of two sea urchins (Tripneustes gratilla and Toxopneustes pileolus)
Many marine organisms broadcast gametes for external fertilization, thus conspecifics need to concentrate the time of gamete release through synchronization with environmental factors. We investigated the timing of spawning in two sea urchin species, Tripneustes gratilla and Toxopneustes pileolus, by assessing the spawning potential of individuals using both surveys and experiments in southern Taiwan from March to November 2010. We developed a new method to observe the spawning potential without sacrificing any individuals, defining those individuals-initiated spawning within 30 min after 10 s of exposure to air as having the spawning potential. We discovered that the percentage of individuals with spawning potential, that is, the spawning ratios of the population, varied greatly from 0% to 80% in To. pileolus and from 0% to 50% in Tr. gratilla within the reproductive seasons. We evaluated the possibility of a lunar/semilunar rhythm of spawning ratios of the population and tested three environmental factors, that is, light intensity, tide, and temperature that could potentially affect the spawning potential of the sea urchins by experiments. Individuals with spawning potential were neither randomly nor evenly distributed among days but were aggregated on certain days; however, no lunar/semilunar rhythm of the spawning ratios was detected within the reproductive season. The possible role of the tidal factor within a day was not found in experiments in either species. However, when water temperature was >27°C in our surveys, significantly higher spawning ratios were observed in To. pileolus, but not in Tr. gratilla in the reproductive season. A further temperature experiment in To. pileolus supported the positive role of high temperature on the spawning ratios of individuals. In addition, To. pileolus was more likely to spawn during the day than at night, and the light/dark experiments suggested that the spawning potential was controlled by an endogenous biological clock rather than by the ambient light conditions directly. The lack of rhythmic pattern and yet concentrated spawning of these sea urchins may be adaptive to avoid predation.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.