地震荷载下钢筋混凝土桥柱的应变需求

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL
Jessica Thangjitham, Mervyn Kowalsky
{"title":"地震荷载下钢筋混凝土桥柱的应变需求","authors":"Jessica Thangjitham, Mervyn Kowalsky","doi":"10.1177/87552930241237716","DOIUrl":null,"url":null,"abstract":"The steel in reinforced concrete (RC) members that form plastic hinges must possess sufficient strain capacity to dissipate seismic deformation demands. Unfortunately, there is limited information on the seismic strain demands of bridge column plastic hinges. Instead, designers rely on a perception of cyclic strain capacity that is an approximate rule of thumb. A standard methodology needs to be established for quantifying the strain demand on these structural members as a function of the expected seismic hazard. To develop this methodology, 1944 columns were analyzed with nonlinear time-history analyses (NLTHAs) using ground motions from a range of earthquakes. This study evaluates the strain demand on RC bridge columns by defining the relationship between the strain demand and earthquake intensity. The results of the model are defined in terms of the peak tensile strain of the reinforcing bar, [Formula: see text]. The earthquake intensity with the highest correlation to the [Formula: see text] was determined to be the elastic spectral displacement at the optimal period ([Formula: see text]), which is defined as 75% of the effective period. The relationship between [Formula: see text] and [Formula: see text] can be used to predict the strain demand for an RC bridge column at a given geographic location. Results are presented as a probability density function (PDF), representing strain demand, compared to a PDF of the column capacity. The intersection of the capacity curve and demand curve represents the maximum acceptable strain given as a function of [Formula: see text]. This methodology can help understand the demand placed on a structural system given a region’s seismicity.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The strain demand of reinforced concrete bridge columns under seismic loading\",\"authors\":\"Jessica Thangjitham, Mervyn Kowalsky\",\"doi\":\"10.1177/87552930241237716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The steel in reinforced concrete (RC) members that form plastic hinges must possess sufficient strain capacity to dissipate seismic deformation demands. Unfortunately, there is limited information on the seismic strain demands of bridge column plastic hinges. Instead, designers rely on a perception of cyclic strain capacity that is an approximate rule of thumb. A standard methodology needs to be established for quantifying the strain demand on these structural members as a function of the expected seismic hazard. To develop this methodology, 1944 columns were analyzed with nonlinear time-history analyses (NLTHAs) using ground motions from a range of earthquakes. This study evaluates the strain demand on RC bridge columns by defining the relationship between the strain demand and earthquake intensity. The results of the model are defined in terms of the peak tensile strain of the reinforcing bar, [Formula: see text]. The earthquake intensity with the highest correlation to the [Formula: see text] was determined to be the elastic spectral displacement at the optimal period ([Formula: see text]), which is defined as 75% of the effective period. The relationship between [Formula: see text] and [Formula: see text] can be used to predict the strain demand for an RC bridge column at a given geographic location. Results are presented as a probability density function (PDF), representing strain demand, compared to a PDF of the column capacity. The intersection of the capacity curve and demand curve represents the maximum acceptable strain given as a function of [Formula: see text]. This methodology can help understand the demand placed on a structural system given a region’s seismicity.\",\"PeriodicalId\":11392,\"journal\":{\"name\":\"Earthquake Spectra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Spectra\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/87552930241237716\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/87552930241237716","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

形成塑性铰链的钢筋混凝土(RC)构件中的钢材必须具备足够的应变能力,以消解地震变形需求。遗憾的是,有关桥柱塑性铰的地震应变要求的信息非常有限。相反,设计人员依赖于对循环应变能力的感知,而这种感知只是一种近似的经验法则。需要建立一种标准方法,将这些结构构件的应变需求量化为预期地震危害的函数。为了制定这种方法,我们利用一系列地震的地面运动,通过非线性时程分析 (NLTHAs) 对 1944 根支柱进行了分析。本研究通过定义应变需求与地震烈度之间的关系来评估 RC 桥柱的应变需求。模型的结果以钢筋的峰值拉应变来定义[公式:见正文]。与[公式:见正文]相关性最高的地震烈度被确定为最佳周期([公式:见正文])下的弹性谱位移,该周期被定义为有效周期的 75%。公式:见正文]与[公式:见正文]之间的关系可用于预测给定地理位置上 RC 桥柱的应变需求。结果以概率密度函数 (PDF) 的形式呈现,代表应变需求与柱子承载力 PDF 的比较。承载力曲线与需求曲线的交点代表可接受的最大应变,它是[公式:见正文]的函数。这种方法有助于了解某一地区地震对结构系统的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strain demand of reinforced concrete bridge columns under seismic loading
The steel in reinforced concrete (RC) members that form plastic hinges must possess sufficient strain capacity to dissipate seismic deformation demands. Unfortunately, there is limited information on the seismic strain demands of bridge column plastic hinges. Instead, designers rely on a perception of cyclic strain capacity that is an approximate rule of thumb. A standard methodology needs to be established for quantifying the strain demand on these structural members as a function of the expected seismic hazard. To develop this methodology, 1944 columns were analyzed with nonlinear time-history analyses (NLTHAs) using ground motions from a range of earthquakes. This study evaluates the strain demand on RC bridge columns by defining the relationship between the strain demand and earthquake intensity. The results of the model are defined in terms of the peak tensile strain of the reinforcing bar, [Formula: see text]. The earthquake intensity with the highest correlation to the [Formula: see text] was determined to be the elastic spectral displacement at the optimal period ([Formula: see text]), which is defined as 75% of the effective period. The relationship between [Formula: see text] and [Formula: see text] can be used to predict the strain demand for an RC bridge column at a given geographic location. Results are presented as a probability density function (PDF), representing strain demand, compared to a PDF of the column capacity. The intersection of the capacity curve and demand curve represents the maximum acceptable strain given as a function of [Formula: see text]. This methodology can help understand the demand placed on a structural system given a region’s seismicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信