双曲方程的均质化:考虑校正器的算子估算

IF 0.6 4区 数学 Q3 MATHEMATICS
M. A. Dorodnyi, T. A. Suslina
{"title":"双曲方程的均质化:考虑校正器的算子估算","authors":"M. A. Dorodnyi,&nbsp;T. A. Suslina","doi":"10.1134/S0016266323040093","DOIUrl":null,"url":null,"abstract":"<p> An elliptic second-order differential operator <span>\\(A_\\varepsilon=b(\\mathbf{D})^*g(\\mathbf{x}/\\varepsilon)b(\\mathbf{D})\\)</span> on <span>\\(L_2(\\mathbb{R}^d)\\)</span> is considered, where <span>\\(\\varepsilon &gt;0\\)</span>, <span>\\(g(\\mathbf{x})\\)</span> is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and <span>\\(b(\\mathbf{D})\\)</span> is a matrix first-order differential operator. Approximations for small <span>\\(\\varepsilon\\)</span> of the operator-functions <span>\\(\\cos(\\tau A_\\varepsilon^{1/2})\\)</span> and <span>\\(A_\\varepsilon^{-1/2} \\sin (\\tau A_\\varepsilon^{1/2})\\)</span> in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation <span>\\(\\partial^2_\\tau \\mathbf{u}_\\varepsilon(\\mathbf{x},\\tau) = - A_\\varepsilon \\mathbf{u}_\\varepsilon(\\mathbf{x},\\tau)\\)</span>. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 4","pages":"364 - 370"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of Hyperbolic Equations: Operator Estimates with Correctors Taken into Account\",\"authors\":\"M. A. Dorodnyi,&nbsp;T. A. Suslina\",\"doi\":\"10.1134/S0016266323040093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> An elliptic second-order differential operator <span>\\\\(A_\\\\varepsilon=b(\\\\mathbf{D})^*g(\\\\mathbf{x}/\\\\varepsilon)b(\\\\mathbf{D})\\\\)</span> on <span>\\\\(L_2(\\\\mathbb{R}^d)\\\\)</span> is considered, where <span>\\\\(\\\\varepsilon &gt;0\\\\)</span>, <span>\\\\(g(\\\\mathbf{x})\\\\)</span> is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and <span>\\\\(b(\\\\mathbf{D})\\\\)</span> is a matrix first-order differential operator. Approximations for small <span>\\\\(\\\\varepsilon\\\\)</span> of the operator-functions <span>\\\\(\\\\cos(\\\\tau A_\\\\varepsilon^{1/2})\\\\)</span> and <span>\\\\(A_\\\\varepsilon^{-1/2} \\\\sin (\\\\tau A_\\\\varepsilon^{1/2})\\\\)</span> in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation <span>\\\\(\\\\partial^2_\\\\tau \\\\mathbf{u}_\\\\varepsilon(\\\\mathbf{x},\\\\tau) = - A_\\\\varepsilon \\\\mathbf{u}_\\\\varepsilon(\\\\mathbf{x},\\\\tau)\\\\)</span>. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 4\",\"pages\":\"364 - 370\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016266323040093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266323040093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 考虑了一个在 \(L_2(\mathbb{R}^d)\) 上的椭圆二阶微分算子 \(A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})\) ,其中 \(\varepsilon >;0),\(g(\mathbf{x})\)是一个正定且有界的矩阵值函数,相对于某个晶格是周期性的,而\(b(\mathbf{D})\)是一个矩阵一阶微分算子。在各种算子规范中,得到了小\(\varepsilon\)的算子函数\(\cos(\tau A_\varepsilon^{1/2})\) 和\(A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})\) 的近似值。这些结果可用于研究双曲方程 Cauchy 问题解的行为 \(\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)\) .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of Hyperbolic Equations: Operator Estimates with Correctors Taken into Account

An elliptic second-order differential operator \(A_\varepsilon=b(\mathbf{D})^*g(\mathbf{x}/\varepsilon)b(\mathbf{D})\) on \(L_2(\mathbb{R}^d)\) is considered, where \(\varepsilon >0\), \(g(\mathbf{x})\) is a positive definite and bounded matrix-valued function periodic with respect to some lattice, and \(b(\mathbf{D})\) is a matrix first-order differential operator. Approximations for small \(\varepsilon\) of the operator-functions \(\cos(\tau A_\varepsilon^{1/2})\) and \(A_\varepsilon^{-1/2} \sin (\tau A_\varepsilon^{1/2})\) in various operator norms are obtained. The results can be applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation \(\partial^2_\tau \mathbf{u}_\varepsilon(\mathbf{x},\tau) = - A_\varepsilon \mathbf{u}_\varepsilon(\mathbf{x},\tau)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信