卡莱-汉密尔顿定理和残差表示法

IF 0.6 4区 数学 Q3 MATHEMATICS
I. D. Kostrub
{"title":"卡莱-汉密尔顿定理和残差表示法","authors":"I. D. Kostrub","doi":"10.1134/S001626632304010X","DOIUrl":null,"url":null,"abstract":"<p> For the Frobenius matrix accompanying an algebraic (differential) equation in a complex Banach algebra, the Cayley–Hamilton theorem is proved, which is used to obtain a representation of the resolvent. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"57 4","pages":"371 - 373"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cayley–Hamilton Theorem and Resolvent Representation\",\"authors\":\"I. D. Kostrub\",\"doi\":\"10.1134/S001626632304010X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> For the Frobenius matrix accompanying an algebraic (differential) equation in a complex Banach algebra, the Cayley–Hamilton theorem is proved, which is used to obtain a representation of the resolvent. </p>\",\"PeriodicalId\":575,\"journal\":{\"name\":\"Functional Analysis and Its Applications\",\"volume\":\"57 4\",\"pages\":\"371 - 373\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S001626632304010X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S001626632304010X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对于复巴纳赫代数中伴随代数(微分)方程的 Frobenius 矩阵,证明了 Cayley-Hamilton 定理,并利用该定理得到了解析量的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cayley–Hamilton Theorem and Resolvent Representation

For the Frobenius matrix accompanying an algebraic (differential) equation in a complex Banach algebra, the Cayley–Hamilton theorem is proved, which is used to obtain a representation of the resolvent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信