论卡萨斯-阿尔维罗猜想研究中的坏素数集

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daniel Schaub, Mark Spivakovsky
{"title":"论卡萨斯-阿尔维罗猜想研究中的坏素数集","authors":"Daniel Schaub, Mark Spivakovsky","doi":"10.1007/s40687-024-00444-z","DOIUrl":null,"url":null,"abstract":"<p>The Casas–Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives <span>\\(H_i(f)\\)</span> is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree <i>d</i>, compile a list of bad primes for that degree (namely, those primes <i>p</i> for which the conjecture fails in degree <i>d</i> and characteristic <i>p</i>) and then deduce the conjecture for all degrees of the form <span>\\(dp^\\ell \\)</span>, <span>\\(\\ell \\in \\mathbb {N}\\)</span>, where <i>p</i> is a good prime for <i>d</i>. In this paper, we calculate certain distinguished monomials appearing in the resultant <span>\\(R(f,H_i(f))\\)</span> and obtain a (non-exhaustive) list of bad primes for every degree <span>\\(d\\in \\mathbb {N}\\setminus \\{0\\}\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the set of bad primes in the study of the Casas–Alvero conjecture\",\"authors\":\"Daniel Schaub, Mark Spivakovsky\",\"doi\":\"10.1007/s40687-024-00444-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Casas–Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives <span>\\\\(H_i(f)\\\\)</span> is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree <i>d</i>, compile a list of bad primes for that degree (namely, those primes <i>p</i> for which the conjecture fails in degree <i>d</i> and characteristic <i>p</i>) and then deduce the conjecture for all degrees of the form <span>\\\\(dp^\\\\ell \\\\)</span>, <span>\\\\(\\\\ell \\\\in \\\\mathbb {N}\\\\)</span>, where <i>p</i> is a good prime for <i>d</i>. In this paper, we calculate certain distinguished monomials appearing in the resultant <span>\\\\(R(f,H_i(f))\\\\)</span> and obtain a (non-exhaustive) list of bad primes for every degree <span>\\\\(d\\\\in \\\\mathbb {N}\\\\setminus \\\\{0\\\\}\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00444-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00444-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卡萨斯-阿尔维罗猜想预言,特性为零的域上的每一个单变量多项式与其导数 \(H_i(f)\)都有一个公共因子,都是线性多项式的幂。证明这个猜想的一种方法是,首先证明某个小度 d 的多项式的猜想,编制一个该度的坏素数列表(即在度 d 和特征 p 中猜想失败的素数 p),然后推导出形式为 \(dp^\ell \), \(\ell \in \mathbb {N}\) 的所有度的猜想,其中 p 是 d 的好素数。在本文中,我们计算了结果 \(R(f,H_i(f))\中出现的某些区分单项式,并得到了每个度 \(d\in \mathbb {N}\setminus \{0\}\)的坏素数列表(并非详尽无遗)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the set of bad primes in the study of the Casas–Alvero conjecture

The Casas–Alvero conjecture predicts that every univariate polynomial over a field of characteristic zero having a common factor with each of its derivatives \(H_i(f)\) is a power of a linear polynomial. One approach to proving the conjecture is to first prove it for polynomials of some small degree d, compile a list of bad primes for that degree (namely, those primes p for which the conjecture fails in degree d and characteristic p) and then deduce the conjecture for all degrees of the form \(dp^\ell \), \(\ell \in \mathbb {N}\), where p is a good prime for d. In this paper, we calculate certain distinguished monomials appearing in the resultant \(R(f,H_i(f))\) and obtain a (non-exhaustive) list of bad primes for every degree \(d\in \mathbb {N}\setminus \{0\}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信