{"title":"$$\\mathbb {R}^3$$ 中的线全等与 $$\\mathbb {R}^4$$ 中的面之间的双重关系","authors":"Marcos Craizer, Ronaldo Garcia","doi":"10.1007/s40687-024-00445-y","DOIUrl":null,"url":null,"abstract":"<p>There is a natural duality between line congruences in <span>\\(\\mathbb {R}^3\\)</span> and surfaces in <span>\\(\\mathbb {R}^4\\)</span> that sends principal lines into asymptotic lines. The same correspondence takes the discriminant curve of a line congruence into the parabolic curve of the dual surface. Moreover, it takes the ridge curves to the flat ridge curves, while the subparabolic curves of a line congruence are taken to certain curves on the surface that we call flat subparabolic curves. In this paper, we discuss these relations and describe the generic behavior of the subparabolic curves at the discriminant curve of the line congruence, or equivalently, the parabolic curve of the dual surface. We also discuss Loewner’s conjectures under the duality viewpoint.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual relations between line congruences in $$\\\\mathbb {R}^3$$ and surfaces in $$\\\\mathbb {R}^4$$\",\"authors\":\"Marcos Craizer, Ronaldo Garcia\",\"doi\":\"10.1007/s40687-024-00445-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a natural duality between line congruences in <span>\\\\(\\\\mathbb {R}^3\\\\)</span> and surfaces in <span>\\\\(\\\\mathbb {R}^4\\\\)</span> that sends principal lines into asymptotic lines. The same correspondence takes the discriminant curve of a line congruence into the parabolic curve of the dual surface. Moreover, it takes the ridge curves to the flat ridge curves, while the subparabolic curves of a line congruence are taken to certain curves on the surface that we call flat subparabolic curves. In this paper, we discuss these relations and describe the generic behavior of the subparabolic curves at the discriminant curve of the line congruence, or equivalently, the parabolic curve of the dual surface. We also discuss Loewner’s conjectures under the duality viewpoint.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00445-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00445-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual relations between line congruences in $$\mathbb {R}^3$$ and surfaces in $$\mathbb {R}^4$$
There is a natural duality between line congruences in \(\mathbb {R}^3\) and surfaces in \(\mathbb {R}^4\) that sends principal lines into asymptotic lines. The same correspondence takes the discriminant curve of a line congruence into the parabolic curve of the dual surface. Moreover, it takes the ridge curves to the flat ridge curves, while the subparabolic curves of a line congruence are taken to certain curves on the surface that we call flat subparabolic curves. In this paper, we discuss these relations and describe the generic behavior of the subparabolic curves at the discriminant curve of the line congruence, or equivalently, the parabolic curve of the dual surface. We also discuss Loewner’s conjectures under the duality viewpoint.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.