{"title":"熵、虚拟阿贝尔性和香农轨道等价性","authors":"DAVID KERR, HANFENG LI","doi":"10.1017/etds.2024.26","DOIUrl":null,"url":null,"abstract":"<p>We prove that if two free probability-measure-preserving (p.m.p.) <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-odometer is Shannon orbit equivalent to the universal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb Z}$</span></span></img></span></span>-odometer.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy, virtual Abelianness and Shannon orbit equivalence\",\"authors\":\"DAVID KERR, HANFENG LI\",\"doi\":\"10.1017/etds.2024.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if two free probability-measure-preserving (p.m.p.) <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb Z}$</span></span></img></span></span>-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb Z}$</span></span></img></span></span>-odometer is Shannon orbit equivalent to the universal <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240329070043690-0459:S0143385724000269:S0143385724000269_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb Z}$</span></span></img></span></span>-odometer.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Entropy, virtual Abelianness and Shannon orbit equivalence
We prove that if two free probability-measure-preserving (p.m.p.) ${\mathbb Z}$-actions are Shannon orbit equivalent, then they have the same entropy. The argument also applies more generally to yield the same conclusion for free p.m.p. actions of finitely generated virtually Abelian groups. Together with the isomorphism theorems of Ornstein and Ornstein–Weiss and the entropy invariance results of Austin and Kerr–Li in the non-virtually-cyclic setting, this shows that two Bernoulli actions of any non-locally-finite countably infinite amenable group are Shannon orbit equivalent if and only if they are measure conjugate. We also show, at the opposite end of the stochastic spectrum, that every ${\mathbb Z}$-odometer is Shannon orbit equivalent to the universal ${\mathbb Z}$-odometer.