{"title":"全形离散级数的简化方法","authors":"Adam Korányi","doi":"10.1016/j.indag.2024.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>Expository article on semisimple Lie groups of Hermitian type and their unitary representations known as the holomorphic discrete series. The realization of the symmetric spaces associated to the groups as bounded symmetric domains is described. The representations in question are defined by holomorphic induction and realized on spaces of vector-valued holomorphic functions on the domain. A key question is whether the induction process yields a non-zero space. It is answered by Harish-Chandra’s condition, for which a complete proof is given.</div></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"36 1","pages":"Pages 29-41"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplified approach to the holomorphic discrete series\",\"authors\":\"Adam Korányi\",\"doi\":\"10.1016/j.indag.2024.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Expository article on semisimple Lie groups of Hermitian type and their unitary representations known as the holomorphic discrete series. The realization of the symmetric spaces associated to the groups as bounded symmetric domains is described. The representations in question are defined by holomorphic induction and realized on spaces of vector-valued holomorphic functions on the domain. A key question is whether the induction process yields a non-zero space. It is answered by Harish-Chandra’s condition, for which a complete proof is given.</div></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"36 1\",\"pages\":\"Pages 29-41\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019357724000314\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357724000314","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A simplified approach to the holomorphic discrete series
Expository article on semisimple Lie groups of Hermitian type and their unitary representations known as the holomorphic discrete series. The realization of the symmetric spaces associated to the groups as bounded symmetric domains is described. The representations in question are defined by holomorphic induction and realized on spaces of vector-valued holomorphic functions on the domain. A key question is whether the induction process yields a non-zero space. It is answered by Harish-Chandra’s condition, for which a complete proof is given.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.