高维和无限维二维样本问题的均匀核技巧

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Javier Cárcamo , Antonio Cuevas , Luis-Alberto Rodríguez
{"title":"高维和无限维二维样本问题的均匀核技巧","authors":"Javier Cárcamo ,&nbsp;Antonio Cuevas ,&nbsp;Luis-Alberto Rodríguez","doi":"10.1016/j.jmva.2024.105317","DOIUrl":null,"url":null,"abstract":"<div><p>We use a suitable version of the so-called ”kernel trick” to devise two-sample tests, especially focussed on high-dimensional and functional data. Our proposal entails a simplification of the practical problem of selecting an appropriate kernel function. Specifically, we apply a uniform variant of the kernel trick which involves the supremum within a class of kernel-based distances. We obtain the asymptotic distribution of the test statistic under the null and alternative hypotheses. The proofs rely on empirical processes theory, combined with the delta method and Hadamard directional differentiability techniques, and functional Karhunen–Loève-type expansions of the underlying processes. This methodology has some advantages over other standard approaches in the literature. We also give some experimental insight into the performance of our proposal compared to other kernel-based approaches (the original proposal by Borgwardt et al. (2006) and some variants based on splitting methods) as well as tests based on energy distances (Rizzo and Székely, 2017).</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"202 ","pages":"Article 105317"},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000241/pdfft?md5=19f44db706891c9aa40d12d1b8b7030a&pid=1-s2.0-S0047259X24000241-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A uniform kernel trick for high and infinite-dimensional two-sample problems\",\"authors\":\"Javier Cárcamo ,&nbsp;Antonio Cuevas ,&nbsp;Luis-Alberto Rodríguez\",\"doi\":\"10.1016/j.jmva.2024.105317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We use a suitable version of the so-called ”kernel trick” to devise two-sample tests, especially focussed on high-dimensional and functional data. Our proposal entails a simplification of the practical problem of selecting an appropriate kernel function. Specifically, we apply a uniform variant of the kernel trick which involves the supremum within a class of kernel-based distances. We obtain the asymptotic distribution of the test statistic under the null and alternative hypotheses. The proofs rely on empirical processes theory, combined with the delta method and Hadamard directional differentiability techniques, and functional Karhunen–Loève-type expansions of the underlying processes. This methodology has some advantages over other standard approaches in the literature. We also give some experimental insight into the performance of our proposal compared to other kernel-based approaches (the original proposal by Borgwardt et al. (2006) and some variants based on splitting methods) as well as tests based on energy distances (Rizzo and Székely, 2017).</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"202 \",\"pages\":\"Article 105317\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000241/pdfft?md5=19f44db706891c9aa40d12d1b8b7030a&pid=1-s2.0-S0047259X24000241-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000241\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000241","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们使用所谓的 "核函数技巧 "的一个合适版本来设计双样本检验,尤其侧重于高维和函数数据。我们的建议需要简化选择适当核函数的实际问题。具体来说,我们应用了核函数技巧的统一变体,它涉及一类基于核函数的距离中的至高点。我们得到了检验统计量在零假设和备择假设下的渐近分布。证明依赖于经验过程理论,结合德尔塔法和哈达玛定向可微分技术,以及基础过程的卡尔胡宁-洛埃夫函数式展开。与文献中的其他标准方法相比,这种方法具有一些优势。我们还通过实验深入分析了我们的建议与其他基于核的方法(Borgwardt 等人(2006 年)的原始建议和一些基于分裂方法的变体)以及基于能量距离的测试(Rizzo 等人,2017 年)相比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A uniform kernel trick for high and infinite-dimensional two-sample problems

We use a suitable version of the so-called ”kernel trick” to devise two-sample tests, especially focussed on high-dimensional and functional data. Our proposal entails a simplification of the practical problem of selecting an appropriate kernel function. Specifically, we apply a uniform variant of the kernel trick which involves the supremum within a class of kernel-based distances. We obtain the asymptotic distribution of the test statistic under the null and alternative hypotheses. The proofs rely on empirical processes theory, combined with the delta method and Hadamard directional differentiability techniques, and functional Karhunen–Loève-type expansions of the underlying processes. This methodology has some advantages over other standard approaches in the literature. We also give some experimental insight into the performance of our proposal compared to other kernel-based approaches (the original proposal by Borgwardt et al. (2006) and some variants based on splitting methods) as well as tests based on energy distances (Rizzo and Székely, 2017).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信