$$\theta $$ -分裂密度和反射正性

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Jobst Ziebell
{"title":"$$\\theta $$ -分裂密度和反射正性","authors":"Jobst Ziebell","doi":"10.1007/s11005-024-01799-8","DOIUrl":null,"url":null,"abstract":"<div><p>A simple condition is given that is sufficient to determine whether a measure that is absolutely continuous with respect to a Gaußian measure on the space of distributions is reflection positive. It readily generalises conventional lattice results to an abstract setting, enabling the construction of many reflection positive measures that are not supported on lattices.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01799-8.pdf","citationCount":"0","resultStr":"{\"title\":\"\\\\(\\\\theta \\\\)-splitting densities and reflection positivity\",\"authors\":\"Jobst Ziebell\",\"doi\":\"10.1007/s11005-024-01799-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A simple condition is given that is sufficient to determine whether a measure that is absolutely continuous with respect to a Gaußian measure on the space of distributions is reflection positive. It readily generalises conventional lattice results to an abstract setting, enabling the construction of many reflection positive measures that are not supported on lattices.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01799-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01799-8\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01799-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一个简单的条件,足以判定相对于分布空间上的高斯度量而言绝对连续的度量是否为反射正量度。它很容易地将传统的网格结果推广到抽象的环境中,从而构建出许多在网格上不被支持的反射正量度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(\theta \)-splitting densities and reflection positivity

A simple condition is given that is sufficient to determine whether a measure that is absolutely continuous with respect to a Gaußian measure on the space of distributions is reflection positive. It readily generalises conventional lattice results to an abstract setting, enabling the construction of many reflection positive measures that are not supported on lattices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信