非局部昆杜-埃克豪斯方程:可整性、黎曼-希尔伯特方法和具有阶梯状初始数据的考奇问题

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Bei-Bei Hu, Zu-Yi Shen, Ling Zhang
{"title":"非局部昆杜-埃克豪斯方程:可整性、黎曼-希尔伯特方法和具有阶梯状初始数据的考奇问题","authors":"Bei-Bei Hu,&nbsp;Zu-Yi Shen,&nbsp;Ling Zhang","doi":"10.1007/s11005-024-01802-2","DOIUrl":null,"url":null,"abstract":"<div><p>The main purpose of this paper is to discuss the Cauchy problem of integrable nonlocal (reverse-space-time) Kundu–Eckhaus (KE) equation through the Riemann–Hilbert (RH) method. Firstly, based on the zero-curvature equation, we present an integrable nonlocal KE equation and its Lax pair. Then, we discuss the properties of eigenfunctions and scattering matrix, such as analyticity, asymptotic behavior, and symmetry. Finally, for the prescribed step-like initial value: <span>\\(u(z,t)=o(1)\\)</span>, <span>\\(z\\rightarrow -\\infty \\)</span> and <span>\\(u(z,t)=R+o(1)\\)</span>, <span>\\(z\\rightarrow +\\infty \\)</span>, where <span>\\(R&gt;0\\)</span> is an arbitrary constant, we consider the initial value problem of the nonlocal KE equation. The paramount techniques is the asymptotic analysis of the associated RH problem.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy problem with step-like initial data\",\"authors\":\"Bei-Bei Hu,&nbsp;Zu-Yi Shen,&nbsp;Ling Zhang\",\"doi\":\"10.1007/s11005-024-01802-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main purpose of this paper is to discuss the Cauchy problem of integrable nonlocal (reverse-space-time) Kundu–Eckhaus (KE) equation through the Riemann–Hilbert (RH) method. Firstly, based on the zero-curvature equation, we present an integrable nonlocal KE equation and its Lax pair. Then, we discuss the properties of eigenfunctions and scattering matrix, such as analyticity, asymptotic behavior, and symmetry. Finally, for the prescribed step-like initial value: <span>\\\\(u(z,t)=o(1)\\\\)</span>, <span>\\\\(z\\\\rightarrow -\\\\infty \\\\)</span> and <span>\\\\(u(z,t)=R+o(1)\\\\)</span>, <span>\\\\(z\\\\rightarrow +\\\\infty \\\\)</span>, where <span>\\\\(R&gt;0\\\\)</span> is an arbitrary constant, we consider the initial value problem of the nonlocal KE equation. The paramount techniques is the asymptotic analysis of the associated RH problem.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01802-2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01802-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是通过黎曼-希尔伯特(Riemann-Hilbert,RH)方法讨论可积分非局部(逆时空)昆杜-埃克豪斯(Kundu-Eckhaus,KE)方程的考奇问题。首先,基于零曲率方程,我们提出了可积分非局部 KE 方程及其 Lax 对。然后,我们讨论了特征函数和散射矩阵的特性,如解析性、渐近行为和对称性。最后,对于规定的阶梯状初值\(u(z,t)=o(1)\), \(z\rightarrow -\infty \)和 \(u(z,t)=R+o(1)\), \(z\rightarrow +\infty \),其中\(R>0\)是一个任意常数,我们考虑非局部KE方程的初值问题。最重要的技术是对相关的 RH 问题进行渐近分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlocal Kundu–Eckhaus equation: integrability, Riemann–Hilbert approach and Cauchy problem with step-like initial data

The main purpose of this paper is to discuss the Cauchy problem of integrable nonlocal (reverse-space-time) Kundu–Eckhaus (KE) equation through the Riemann–Hilbert (RH) method. Firstly, based on the zero-curvature equation, we present an integrable nonlocal KE equation and its Lax pair. Then, we discuss the properties of eigenfunctions and scattering matrix, such as analyticity, asymptotic behavior, and symmetry. Finally, for the prescribed step-like initial value: \(u(z,t)=o(1)\), \(z\rightarrow -\infty \) and \(u(z,t)=R+o(1)\), \(z\rightarrow +\infty \), where \(R>0\) is an arbitrary constant, we consider the initial value problem of the nonlocal KE equation. The paramount techniques is the asymptotic analysis of the associated RH problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信