{"title":"正交折中超振荡器拉克斯矩阵","authors":"Rouven Frassek, Alexander Tsymbaliuk","doi":"10.1007/s11005-024-01789-w","DOIUrl":null,"url":null,"abstract":"<div><p>We construct Lax matrices of superoscillator type that are solutions of the RTT-relation for the rational orthosymplectic <i>R</i>-matrix, generalizing orthogonal and symplectic oscillator type Lax matrices previously constructed by the authors in Frassek (Nuclear Phys B, 2020), Frassek and Tsymbaliuk (Commun Math Phys 392 (2):545–619, 2022), Frassek et al. (Commun Math Phys 400 (1):1–82, 2023). We further establish factorisation formulas among the presented solutions.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthosymplectic superoscillator Lax matrices\",\"authors\":\"Rouven Frassek, Alexander Tsymbaliuk\",\"doi\":\"10.1007/s11005-024-01789-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct Lax matrices of superoscillator type that are solutions of the RTT-relation for the rational orthosymplectic <i>R</i>-matrix, generalizing orthogonal and symplectic oscillator type Lax matrices previously constructed by the authors in Frassek (Nuclear Phys B, 2020), Frassek and Tsymbaliuk (Commun Math Phys 392 (2):545–619, 2022), Frassek et al. (Commun Math Phys 400 (1):1–82, 2023). We further establish factorisation formulas among the presented solutions.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01789-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01789-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们构建了超振荡器类型的拉克斯矩阵,这些矩阵是有理正交R矩阵的RTT相关解,概括了作者之前在Frassek (Nuclear Phys B, 2020), Frassek and Tsymbaliuk (Commun Math Phys 392 (2):545-619, 2022), Frassek et al. (Commun Math Phys 400 (1):1-82, 2023) 中构建的正交和交错振荡器类型的拉克斯矩阵。我们进一步建立了所提出的解之间的因式分解公式。
We construct Lax matrices of superoscillator type that are solutions of the RTT-relation for the rational orthosymplectic R-matrix, generalizing orthogonal and symplectic oscillator type Lax matrices previously constructed by the authors in Frassek (Nuclear Phys B, 2020), Frassek and Tsymbaliuk (Commun Math Phys 392 (2):545–619, 2022), Frassek et al. (Commun Math Phys 400 (1):1–82, 2023). We further establish factorisation formulas among the presented solutions.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.