Sarah A. Jasim, Ammar Ayesh, A. Kadhim, Oday I. Abdullah
{"title":"通过激光冲击强化提高 316 不锈钢的耐腐蚀性能","authors":"Sarah A. Jasim, Ammar Ayesh, A. Kadhim, Oday I. Abdullah","doi":"10.2478/pjct-2024-0001","DOIUrl":null,"url":null,"abstract":"This research paper focuses on enhancing the surface characteristics of the 316 stainless steel (SS316) alloy, including roughness, microhardness, and corrosion resistance. Where the application of ND-YAG laser technology, a highly relevant and timely area, was investigated deeply. The Q-switching Nd: YAG Laser was used with varying laser energy levels within the context of the laser shock peening (LSP) technique. The corrosion resistance of the 316 ss alloy is evaluated in a corrosive environment of 500 mL of saliva (with a pH of 5.6) through electrochemical corrosion testing. Corrosion rate was determined based on the analysis of polarization curves. The outcomes of this research reveal that as the laser energy was increased, there was a noticeable enhancement in the mechanical properties of the 316 ss alloy’s surface. Importantly, the corrosion rate experiences a significant reduction, decreasing from 4.94 mm/yr to 3.59 mm/yr following laser shock peening (LSP) application.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"66 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the corrosion resistance for stainless steel 316 by applying laser shock peening\",\"authors\":\"Sarah A. Jasim, Ammar Ayesh, A. Kadhim, Oday I. Abdullah\",\"doi\":\"10.2478/pjct-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper focuses on enhancing the surface characteristics of the 316 stainless steel (SS316) alloy, including roughness, microhardness, and corrosion resistance. Where the application of ND-YAG laser technology, a highly relevant and timely area, was investigated deeply. The Q-switching Nd: YAG Laser was used with varying laser energy levels within the context of the laser shock peening (LSP) technique. The corrosion resistance of the 316 ss alloy is evaluated in a corrosive environment of 500 mL of saliva (with a pH of 5.6) through electrochemical corrosion testing. Corrosion rate was determined based on the analysis of polarization curves. The outcomes of this research reveal that as the laser energy was increased, there was a noticeable enhancement in the mechanical properties of the 316 ss alloy’s surface. Importantly, the corrosion rate experiences a significant reduction, decreasing from 4.94 mm/yr to 3.59 mm/yr following laser shock peening (LSP) application.\",\"PeriodicalId\":20324,\"journal\":{\"name\":\"Polish Journal of Chemical Technology\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Chemical Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pjct-2024-0001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pjct-2024-0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancement of the corrosion resistance for stainless steel 316 by applying laser shock peening
This research paper focuses on enhancing the surface characteristics of the 316 stainless steel (SS316) alloy, including roughness, microhardness, and corrosion resistance. Where the application of ND-YAG laser technology, a highly relevant and timely area, was investigated deeply. The Q-switching Nd: YAG Laser was used with varying laser energy levels within the context of the laser shock peening (LSP) technique. The corrosion resistance of the 316 ss alloy is evaluated in a corrosive environment of 500 mL of saliva (with a pH of 5.6) through electrochemical corrosion testing. Corrosion rate was determined based on the analysis of polarization curves. The outcomes of this research reveal that as the laser energy was increased, there was a noticeable enhancement in the mechanical properties of the 316 ss alloy’s surface. Importantly, the corrosion rate experiences a significant reduction, decreasing from 4.94 mm/yr to 3.59 mm/yr following laser shock peening (LSP) application.
期刊介绍:
Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.