{"title":"戈德斯坦线搜索的改进","authors":"Arnold Neumaier, Morteza Kimiaei","doi":"10.1007/s11590-024-02110-3","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces <span>CLS</span>, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search with search directions satisfying the bounded angle condition, global convergence to a stationary point is proved for continuously differentiable objective functions that are bounded below and have Lipschitz continuous gradients. The standard complexity bounds are proved under several natural assumptions.</p>","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"177 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improvement of the Goldstein line search\",\"authors\":\"Arnold Neumaier, Morteza Kimiaei\",\"doi\":\"10.1007/s11590-024-02110-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces <span>CLS</span>, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search with search directions satisfying the bounded angle condition, global convergence to a stationary point is proved for continuously differentiable objective functions that are bounded below and have Lipschitz continuous gradients. The standard complexity bounds are proved under several natural assumptions.</p>\",\"PeriodicalId\":49720,\"journal\":{\"name\":\"Optimization Letters\",\"volume\":\"177 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11590-024-02110-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11590-024-02110-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
This paper introduces CLS, a new line search along an arbitrary smooth search path, that starts at the current iterate tangentially to a descent direction. Like the Goldstein line search and unlike the Wolfe line search, the new line search uses, beyond the gradient at the current iterate, only function values. Using this line search with search directions satisfying the bounded angle condition, global convergence to a stationary point is proved for continuously differentiable objective functions that are bounded below and have Lipschitz continuous gradients. The standard complexity bounds are proved under several natural assumptions.
期刊介绍:
Optimization Letters is an international journal covering all aspects of optimization, including theory, algorithms, computational studies, and applications, and providing an outlet for rapid publication of short communications in the field. Originality, significance, quality and clarity are the essential criteria for choosing the material to be published.
Optimization Letters has been expanding in all directions at an astonishing rate during the last few decades. New algorithmic and theoretical techniques have been developed, the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects of the field has grown even more profound. At the same time one of the most striking trends in optimization is the constantly increasing interdisciplinary nature of the field.
Optimization Letters aims to communicate in a timely fashion all recent developments in optimization with concise short articles (limited to a total of ten journal pages). Such concise articles will be easily accessible by readers working in any aspects of optimization and wish to be informed of recent developments.