脉冲 Sturm-Liouville 边界值问题正解的多重性和不存在性

IF 1.7 4区 数学 Q1 Mathematics
Xuxin Yang, Piao Liu, Weibing Wang
{"title":"脉冲 Sturm-Liouville 边界值问题正解的多重性和不存在性","authors":"Xuxin Yang, Piao Liu, Weibing Wang","doi":"10.1186/s13661-024-01840-8","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence, nonexistence, and multiplicity of positive solutions to a nonlinear impulsive Sturm–Liouville boundary value problem with a parameter. By using a variational method, we prove that the problem has at least two positive solutions for the parameter $\\lambda \\in (0,\\Lambda )$ , one positive solution for $\\lambda =\\Lambda $ , and no positive solution for $\\lambda >\\Lambda $ , where $\\Lambda >0$ is a constant.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"156 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity and nonexistence of positive solutions to impulsive Sturm–Liouville boundary value problems\",\"authors\":\"Xuxin Yang, Piao Liu, Weibing Wang\",\"doi\":\"10.1186/s13661-024-01840-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence, nonexistence, and multiplicity of positive solutions to a nonlinear impulsive Sturm–Liouville boundary value problem with a parameter. By using a variational method, we prove that the problem has at least two positive solutions for the parameter $\\\\lambda \\\\in (0,\\\\Lambda )$ , one positive solution for $\\\\lambda =\\\\Lambda $ , and no positive solution for $\\\\lambda >\\\\Lambda $ , where $\\\\Lambda >0$ is a constant.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01840-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01840-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带参数的非线性脉冲 Sturm-Liouville 边界值问题正解的存在性、不存在性和多重性。通过使用变分法,我们证明该问题在参数 $\lambda \in (0,\Lambda )$ 时至少有两个正解,在 $\lambda =\Lambda $ 时有一个正解,而在 $\lambda >\Lambda $ 时没有正解,其中 $\Lambda >0$ 是一个常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicity and nonexistence of positive solutions to impulsive Sturm–Liouville boundary value problems
In this paper, we study the existence, nonexistence, and multiplicity of positive solutions to a nonlinear impulsive Sturm–Liouville boundary value problem with a parameter. By using a variational method, we prove that the problem has at least two positive solutions for the parameter $\lambda \in (0,\Lambda )$ , one positive solution for $\lambda =\Lambda $ , and no positive solution for $\lambda >\Lambda $ , where $\Lambda >0$ is a constant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信