泊松流形上的双括号向量场

Petre Birtea, Zohreh Ravanpak, Cornelia Vizman
{"title":"泊松流形上的双括号向量场","authors":"Petre Birtea, Zohreh Ravanpak, Cornelia Vizman","doi":"arxiv-2404.03221","DOIUrl":null,"url":null,"abstract":"We generalize the double bracket vector fields defined on compact semi-simple\nLie algebras to the case of general Poisson manifolds endowed with a\npseudo-Riemannian metric. We construct a generalization of the normal metric\nsuch that the above vector fields, when restricted to a symplectic leaf, become\ngradient vector fields. We illustrate the discussion at a variety of examples\nand carefully discuss complications that arise when the pseudo-Riemannian\nmetric does not induce a non-degenerate metric on parts of the symplectic\nleaves.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double bracket vector fields on Poisson manifolds\",\"authors\":\"Petre Birtea, Zohreh Ravanpak, Cornelia Vizman\",\"doi\":\"arxiv-2404.03221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the double bracket vector fields defined on compact semi-simple\\nLie algebras to the case of general Poisson manifolds endowed with a\\npseudo-Riemannian metric. We construct a generalization of the normal metric\\nsuch that the above vector fields, when restricted to a symplectic leaf, become\\ngradient vector fields. We illustrate the discussion at a variety of examples\\nand carefully discuss complications that arise when the pseudo-Riemannian\\nmetric does not induce a non-degenerate metric on parts of the symplectic\\nleaves.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.03221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.03221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将定义在紧凑半简单李代数上的双括号向量场推广到具有伪黎曼度量的一般泊松流形的情况。我们构建了法线度量的广义,使得上述矢量场在局限于交点叶时成为梯度矢量场。我们用各种例子来说明讨论,并仔细讨论了当伪黎曼度量在交点叶的部分上不引起非退化度量时出现的并发症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double bracket vector fields on Poisson manifolds
We generalize the double bracket vector fields defined on compact semi-simple Lie algebras to the case of general Poisson manifolds endowed with a pseudo-Riemannian metric. We construct a generalization of the normal metric such that the above vector fields, when restricted to a symplectic leaf, become gradient vector fields. We illustrate the discussion at a variety of examples and carefully discuss complications that arise when the pseudo-Riemannian metric does not induce a non-degenerate metric on parts of the symplectic leaves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信