关于 C(K,X) 上某些类算子的观察结果

IF 0.6 3区 数学 Q3 MATHEMATICS
I. Ghenciu, R. Popescu
{"title":"关于 C(K,X) 上某些类算子的观察结果","authors":"I. Ghenciu,&nbsp;R. Popescu","doi":"10.1007/s10476-024-00009-w","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose <i>X</i> and <i>Y</i> are Banach spaces, <i>K</i> is a compact Hausdorff space, <span>\\(\\Sigma\\)</span> is the <span>\\(\\sigma\\)</span>-algebra of Borel subsets of <i>K</i>, <span>\\(C(K,X)\\)</span> is the Banach space of all continuous <i>X</i>-valued functions (with the supremum norm), and <span>\\(T \\colon C(K,X)\\to Y\\)</span> is a strongly bounded operator with representing measure <span>\\(m \\colon \\Sigma \\to L(X,Y)\\)</span>. \nWe show that if <span>\\(\\hat{T} \\colon B(K, X) \\to Y\\)</span> is its extension, then <i>T</i> is weak Dunford--Pettis (resp.weak<sup>*</sup> Dunford--Pettis, weak <i>p</i>-convergent, weak<sup>*</sup> <i>p</i>-convergent) if and only if <span>\\(\\hat{T}\\)</span> has the same property.</p><p>We prove that if <span>\\(T \\colon C(K,X)\\to Y\\)</span> is strongly bounded limited completely continuous (resp. limited <i>p</i>-convergent), then <span>\\(m(A) \\colon X\\to Y\\)</span> is limited completely continuous (resp. limited <i>p</i>-convergent) for each <span>\\(A\\in \\Sigma\\)</span>. We also prove that the above implications become equivalences when <i>K</i> is a dispersed compact Hausdorff space.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations on some classes of operators on C(K,X)\",\"authors\":\"I. Ghenciu,&nbsp;R. Popescu\",\"doi\":\"10.1007/s10476-024-00009-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose <i>X</i> and <i>Y</i> are Banach spaces, <i>K</i> is a compact Hausdorff space, <span>\\\\(\\\\Sigma\\\\)</span> is the <span>\\\\(\\\\sigma\\\\)</span>-algebra of Borel subsets of <i>K</i>, <span>\\\\(C(K,X)\\\\)</span> is the Banach space of all continuous <i>X</i>-valued functions (with the supremum norm), and <span>\\\\(T \\\\colon C(K,X)\\\\to Y\\\\)</span> is a strongly bounded operator with representing measure <span>\\\\(m \\\\colon \\\\Sigma \\\\to L(X,Y)\\\\)</span>. \\nWe show that if <span>\\\\(\\\\hat{T} \\\\colon B(K, X) \\\\to Y\\\\)</span> is its extension, then <i>T</i> is weak Dunford--Pettis (resp.weak<sup>*</sup> Dunford--Pettis, weak <i>p</i>-convergent, weak<sup>*</sup> <i>p</i>-convergent) if and only if <span>\\\\(\\\\hat{T}\\\\)</span> has the same property.</p><p>We prove that if <span>\\\\(T \\\\colon C(K,X)\\\\to Y\\\\)</span> is strongly bounded limited completely continuous (resp. limited <i>p</i>-convergent), then <span>\\\\(m(A) \\\\colon X\\\\to Y\\\\)</span> is limited completely continuous (resp. limited <i>p</i>-convergent) for each <span>\\\\(A\\\\in \\\\Sigma\\\\)</span>. We also prove that the above implications become equivalences when <i>K</i> is a dispersed compact Hausdorff space.</p></div>\",\"PeriodicalId\":55518,\"journal\":{\"name\":\"Analysis Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-024-00009-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-024-00009-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 X 和 Y 是巴拿赫空间,K 是一个紧凑的 Hausdorff 空间,\(\sigma\) 是 K 的 Borel 子集的\(\sigma\)-代数,\(C(K. X)\) 是所有连续的 X 值函数的巴拿赫空间(具有 supremum 规范),并且X)是所有连续的 X 值函数的巴拿赫空间(具有至上规范),而(T (colon C(K,X)\to Y)是一个具有代表度量的强有界算子(m (colon \Sigma \to L(X,Y)\)。我们证明,如果 \({T}是\是它的扩展,那么当且仅当\(\hat{T}\)具有相同的性质时,T是弱邓福德--佩提斯(resp.weak* Dunford--Pettis,弱p-convergent,弱* p-convergent)。我们证明,如果\(T \colon C(K,X)\to Y\) 是强边界有限完全连续的(respect. limited p-convergent),那么对于每个\(A\in \Sigma\)来说,\(m(A) \colon X\to Y\) 都是有限完全连续的(respect.)我们还证明,当 K 是一个分散紧凑的 Hausdorff 空间时,上述含义成为等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observations on some classes of operators on C(K,X)

Suppose X and Y are Banach spaces, K is a compact Hausdorff space, \(\Sigma\) is the \(\sigma\)-algebra of Borel subsets of K, \(C(K,X)\) is the Banach space of all continuous X-valued functions (with the supremum norm), and \(T \colon C(K,X)\to Y\) is a strongly bounded operator with representing measure \(m \colon \Sigma \to L(X,Y)\). We show that if \(\hat{T} \colon B(K, X) \to Y\) is its extension, then T is weak Dunford--Pettis (resp.weak* Dunford--Pettis, weak p-convergent, weak* p-convergent) if and only if \(\hat{T}\) has the same property.

We prove that if \(T \colon C(K,X)\to Y\) is strongly bounded limited completely continuous (resp. limited p-convergent), then \(m(A) \colon X\to Y\) is limited completely continuous (resp. limited p-convergent) for each \(A\in \Sigma\). We also prove that the above implications become equivalences when K is a dispersed compact Hausdorff space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis Mathematica
Analysis Mathematica MATHEMATICS-
CiteScore
1.00
自引率
14.30%
发文量
54
审稿时长
>12 weeks
期刊介绍: Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx). The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx). The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信