近似加权正方形和六边形网格中的最短路径

Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira
{"title":"近似加权正方形和六边形网格中的最短路径","authors":"Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira","doi":"arxiv-2404.07562","DOIUrl":null,"url":null,"abstract":"Continuous 2-dimensional space is often discretized by considering a mesh of\nweighted cells. In this work we study how well a weighted mesh approximates the\nspace, with respect to shortest paths. We consider a shortest path $\n\\mathit{SP_w}(s,t) $ from $ s $ to $ t $ in the continuous 2-dimensional space,\na shortest vertex path $ \\mathit{SVP_w}(s,t) $ (or any-angle path), which is a\nshortest path where the vertices of the path are vertices of the mesh, and a\nshortest grid path $ \\mathit{SGP_w}(s,t) $, which is a shortest path in a graph\nassociated to the weighted mesh. We provide upper and lower bounds on the\nratios $ \\frac{\\lVert \\mathit{SGP_w}(s,t)\\rVert}{\\lVert\n\\mathit{SP_w}(s,t)\\rVert} $, $ \\frac{\\lVert \\mathit{SVP_w}(s,t)\\rVert}{\\lVert\n\\mathit{SP_w}(s,t)\\rVert} $, $ \\frac{\\lVert \\mathit{SGP_w}(s,t)\\rVert}{\\lVert\n\\mathit{SVP_w}(s,t)\\rVert} $ in square and hexagonal meshes, extending previous\nresults for triangular grids. These ratios determine the effectiveness of\nexisting algorithms that compute shortest paths on the graphs obtained from the\ngrids. Our main results are that the ratio $ \\frac{\\lVert\n\\mathit{SGP_w}(s,t)\\rVert}{\\lVert \\mathit{SP_w}(s,t)\\rVert} $ is at most $\n\\frac{2}{\\sqrt{2+\\sqrt{2}}} \\approx 1.08 $ and $ \\frac{2}{\\sqrt{2+\\sqrt{3}}}\n\\approx 1.04 $ in a square and a hexagonal mesh, respectively.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating shortest paths in weighted square and hexagonal meshes\",\"authors\":\"Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira\",\"doi\":\"arxiv-2404.07562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous 2-dimensional space is often discretized by considering a mesh of\\nweighted cells. In this work we study how well a weighted mesh approximates the\\nspace, with respect to shortest paths. We consider a shortest path $\\n\\\\mathit{SP_w}(s,t) $ from $ s $ to $ t $ in the continuous 2-dimensional space,\\na shortest vertex path $ \\\\mathit{SVP_w}(s,t) $ (or any-angle path), which is a\\nshortest path where the vertices of the path are vertices of the mesh, and a\\nshortest grid path $ \\\\mathit{SGP_w}(s,t) $, which is a shortest path in a graph\\nassociated to the weighted mesh. We provide upper and lower bounds on the\\nratios $ \\\\frac{\\\\lVert \\\\mathit{SGP_w}(s,t)\\\\rVert}{\\\\lVert\\n\\\\mathit{SP_w}(s,t)\\\\rVert} $, $ \\\\frac{\\\\lVert \\\\mathit{SVP_w}(s,t)\\\\rVert}{\\\\lVert\\n\\\\mathit{SP_w}(s,t)\\\\rVert} $, $ \\\\frac{\\\\lVert \\\\mathit{SGP_w}(s,t)\\\\rVert}{\\\\lVert\\n\\\\mathit{SVP_w}(s,t)\\\\rVert} $ in square and hexagonal meshes, extending previous\\nresults for triangular grids. These ratios determine the effectiveness of\\nexisting algorithms that compute shortest paths on the graphs obtained from the\\ngrids. Our main results are that the ratio $ \\\\frac{\\\\lVert\\n\\\\mathit{SGP_w}(s,t)\\\\rVert}{\\\\lVert \\\\mathit{SP_w}(s,t)\\\\rVert} $ is at most $\\n\\\\frac{2}{\\\\sqrt{2+\\\\sqrt{2}}} \\\\approx 1.08 $ and $ \\\\frac{2}{\\\\sqrt{2+\\\\sqrt{3}}}\\n\\\\approx 1.04 $ in a square and a hexagonal mesh, respectively.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.07562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

连续的二维空间通常通过考虑加权单元网格来离散化。在这项工作中,我们将研究加权网格在最短路径方面对空间的逼近程度。我们考虑连续二维空间中从 $ s $ 到 $ t $ 的最短路径 $ \mathit{SP_w}(s,t) $、最短顶点路径 $ \mathit{SVP_w}(s,t) $(或任意角度路径)、和最短网格路径 $ \mathit{SGP_w}(s,t) $,后者是与加权网格相关的图中的最短路径。我们提供了 $ \frac\{lVert \mathit{SGP_w}(s,t)\rVert}{\lVert\mathit{SP_w}(s,t)\rVert} $, $ \frac\{lVert \mathit{SVP_w}(s,t)\rVert}{\lVert\mathit{SP_w}(s. t)\rVert} $, $ \frac\{lVert \mathit{SVP_w}(s,t)\rVert}{\lVert\mathit{SP_w}(s. t)\rVert} $ 的上界和下界、$, $ \frac\mathit{SGP_w}(s,t)\rVert}{lVert\mathit{SVP_w}(s,t)\rVert} $ in square and hexagonal meshes, extend previousresults for triangular grids.这些比值决定了现有算法计算网格所获图形上最短路径的有效性。我们的主要结果是:比值 ${frac\lVert\mathit{SGP_w}(s,t)\rVert}{lVert \mathit{SP_w}(s,t)\rVert} $ 最多为 $\frac{2}{sqrt{2+\sqrt{2}}}.\在正方形和六边形网格中分别为大约 1.08 $ 和大约 1.04 $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating shortest paths in weighted square and hexagonal meshes
Continuous 2-dimensional space is often discretized by considering a mesh of weighted cells. In this work we study how well a weighted mesh approximates the space, with respect to shortest paths. We consider a shortest path $ \mathit{SP_w}(s,t) $ from $ s $ to $ t $ in the continuous 2-dimensional space, a shortest vertex path $ \mathit{SVP_w}(s,t) $ (or any-angle path), which is a shortest path where the vertices of the path are vertices of the mesh, and a shortest grid path $ \mathit{SGP_w}(s,t) $, which is a shortest path in a graph associated to the weighted mesh. We provide upper and lower bounds on the ratios $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $, $ \frac{\lVert \mathit{SVP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $, $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SVP_w}(s,t)\rVert} $ in square and hexagonal meshes, extending previous results for triangular grids. These ratios determine the effectiveness of existing algorithms that compute shortest paths on the graphs obtained from the grids. Our main results are that the ratio $ \frac{\lVert \mathit{SGP_w}(s,t)\rVert}{\lVert \mathit{SP_w}(s,t)\rVert} $ is at most $ \frac{2}{\sqrt{2+\sqrt{2}}} \approx 1.08 $ and $ \frac{2}{\sqrt{2+\sqrt{3}}} \approx 1.04 $ in a square and a hexagonal mesh, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信