马丁格尔-哈代-奥利奇-汞齐空间

IF 1.2 3区 数学 Q1 MATHEMATICS
Libo Li, Kaituo Liu, Yao Wang
{"title":"马丁格尔-哈代-奥利奇-汞齐空间","authors":"Libo Li,&nbsp;Kaituo Liu,&nbsp;Yao Wang","doi":"10.1007/s43034-024-00338-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the authors first introduce a class of Orlicz-amalgam spaces, which defined on a probabilistic setting. Based on these Orlicz-amalgam spaces, the authors introduce a new kind of Hardy type spaces, namely martingale Hardy–Orlicz-amalgam spaces, which generalize the martingale Hardy-amalgam spaces very recently studied by Bansah and Sehba. Their characterizations via the atomic decompositions are also obtained. As applications of these characterizations, the authors construct the dual theorems in the new framework. Furthermore, the authors also present the boundedness of fractional integral operators <span>\\(I_\\alpha \\)</span> on martingale Hardy–Orlicz-amalgam spaces.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Martingale Hardy–Orlicz-amalgam spaces\",\"authors\":\"Libo Li,&nbsp;Kaituo Liu,&nbsp;Yao Wang\",\"doi\":\"10.1007/s43034-024-00338-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the authors first introduce a class of Orlicz-amalgam spaces, which defined on a probabilistic setting. Based on these Orlicz-amalgam spaces, the authors introduce a new kind of Hardy type spaces, namely martingale Hardy–Orlicz-amalgam spaces, which generalize the martingale Hardy-amalgam spaces very recently studied by Bansah and Sehba. Their characterizations via the atomic decompositions are also obtained. As applications of these characterizations, the authors construct the dual theorems in the new framework. Furthermore, the authors also present the boundedness of fractional integral operators <span>\\\\(I_\\\\alpha \\\\)</span> on martingale Hardy–Orlicz-amalgam spaces.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00338-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00338-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,作者首先介绍了一类定义在概率环境中的奥立兹-汞齐空间。在这些奥利兹汞齐空间的基础上,作者引入了一种新的哈代类型空间,即鞅哈代-奥利兹汞齐空间,它概括了班萨和塞巴最近研究的鞅哈代-汞齐空间。我们还通过原子分解得到了它们的特征。作为这些特征的应用,作者在新框架中构建了对偶定理。此外,作者还提出了分数积分算子 \(I_\alpha \) 在鞅 Hardy-Orlicz-amalgam 空间上的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Martingale Hardy–Orlicz-amalgam spaces

In this article, the authors first introduce a class of Orlicz-amalgam spaces, which defined on a probabilistic setting. Based on these Orlicz-amalgam spaces, the authors introduce a new kind of Hardy type spaces, namely martingale Hardy–Orlicz-amalgam spaces, which generalize the martingale Hardy-amalgam spaces very recently studied by Bansah and Sehba. Their characterizations via the atomic decompositions are also obtained. As applications of these characterizations, the authors construct the dual theorems in the new framework. Furthermore, the authors also present the boundedness of fractional integral operators \(I_\alpha \) on martingale Hardy–Orlicz-amalgam spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信