{"title":"p(x)-Laplacian 型非同质椭圆方程梯度的荷尔德连续性","authors":"Fengping Yao","doi":"10.1007/s43034-024-00340-1","DOIUrl":null,"url":null,"abstract":"<div><p>The main goal of this paper is to discuss the local Hölder continuity of the gradients for weak solutions of the following non-homogenous elliptic <i>p</i>(<i>x</i>)-Laplacian equations of divergence form </p><div><div><span>$$\\begin{aligned} \\text {div} \\left( \\left( A(x) \\nabla u(x) \\cdot \\nabla u(x) \\right) ^{\\frac{p(x)-2}{2}} A(x) \\nabla u(x) \\right) = \\text {div} \\left( |\\textbf{f}(x) |^{p(x)-2} \\textbf{f}(x) \\right) ~~ \\text{ in }~ \\Omega , \\end{aligned}$$</span></div></div><p>where <span>\\(\\Omega \\subset \\mathbb {R}^{n}\\)</span> is an open bounded domain for <span>\\(n \\ge 2\\)</span>, under some proper non-Hölder conditions on the variable exponents <i>p</i>(<i>x</i>) and the coefficients matrix <i>A</i>(<i>x</i>).</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hölder continuity of the gradients for non-homogenous elliptic equations of p(x)-Laplacian type\",\"authors\":\"Fengping Yao\",\"doi\":\"10.1007/s43034-024-00340-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main goal of this paper is to discuss the local Hölder continuity of the gradients for weak solutions of the following non-homogenous elliptic <i>p</i>(<i>x</i>)-Laplacian equations of divergence form </p><div><div><span>$$\\\\begin{aligned} \\\\text {div} \\\\left( \\\\left( A(x) \\\\nabla u(x) \\\\cdot \\\\nabla u(x) \\\\right) ^{\\\\frac{p(x)-2}{2}} A(x) \\\\nabla u(x) \\\\right) = \\\\text {div} \\\\left( |\\\\textbf{f}(x) |^{p(x)-2} \\\\textbf{f}(x) \\\\right) ~~ \\\\text{ in }~ \\\\Omega , \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\Omega \\\\subset \\\\mathbb {R}^{n}\\\\)</span> is an open bounded domain for <span>\\\\(n \\\\ge 2\\\\)</span>, under some proper non-Hölder conditions on the variable exponents <i>p</i>(<i>x</i>) and the coefficients matrix <i>A</i>(<i>x</i>).</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00340-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00340-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文的主要目的是讨论以下发散形式的非同质椭圆 p(x)-Laplacian 方程的弱解的梯度的局部荷尔德连续性 $$begin{aligned}\text {div} \left( \left( A(x) \nabla u(x) \cdot \nabla u(x) \right) ^\{frac{p(x)-2}{2}}A(x) \nabla u(x) \right) = \text {div} \left( |\textbf{f}(x) |^{p(x)-2} \textbf{f}(x) \right) ~~ \text{ in }~ \Omega 、\end{aligned}$where \(\Omega \subset \mathbb {R}^{n}\) is an open bounded domain for \(n \ge 2\), under some proper non-Hölder conditions on the variable exponents p(x) and the coefficients matrix A(x).
Hölder continuity of the gradients for non-homogenous elliptic equations of p(x)-Laplacian type
The main goal of this paper is to discuss the local Hölder continuity of the gradients for weak solutions of the following non-homogenous elliptic p(x)-Laplacian equations of divergence form
where \(\Omega \subset \mathbb {R}^{n}\) is an open bounded domain for \(n \ge 2\), under some proper non-Hölder conditions on the variable exponents p(x) and the coefficients matrix A(x).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.