C^*$$ 算法中伯克霍夫-詹姆斯正交性的特征及其应用

IF 1.2 3区 数学 Q1 MATHEMATICS
Hooriye Sadat Jalali Ghamsari, Mahdi Dehghani
{"title":"C^*$$ 算法中伯克霍夫-詹姆斯正交性的特征及其应用","authors":"Hooriye Sadat Jalali Ghamsari,&nbsp;Mahdi Dehghani","doi":"10.1007/s43034-024-00339-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {A}}\\)</span> be a unital <span>\\(C^*\\)</span>-algebra with unit <span>\\(1_{{\\mathcal {A}}}\\)</span> and let <span>\\(a\\in {\\mathcal {A}}\\)</span> be a positive and invertible element. Suppose that <span>\\({\\mathcal {S}}({\\mathcal {A}})\\)</span> is the set of all states on <span>\\(\\mathcal {{\\mathcal {A}}}\\)</span> and let </p><div><div><span>$$\\begin{aligned} {\\mathcal {S}}_a ({\\mathcal {A}})=\\left\\{ \\dfrac{f}{f(a)} \\, : \\, f \\in {\\mathcal {S}}({\\mathcal {A}}), \\, f(a)\\ne 0\\right\\} . \\end{aligned}$$</span></div></div><p>The norm <span>\\( \\Vert x\\Vert _a \\)</span> for every <span>\\( x \\in {\\mathcal {A}} \\)</span> is defined by </p><div><div><span>$$\\begin{aligned} \\Vert x\\Vert _a = \\sup _{\\varphi \\in {\\mathcal {S}}_a ({\\mathcal {A}}) } \\sqrt{\\varphi (x^* ax)}. \\end{aligned}$$</span></div></div><p>In this paper, we aim to investigate the notion of Birkhoff–James orthogonality with respect to the norm <span>\\(\\Vert \\cdot \\Vert _a\\)</span> in <span>\\({\\mathcal {A}},\\)</span> namely <i>a</i>-Birkhoff–James orthogonality. The characterization of <i>a</i>-Birkhoff–James orthogonality in <span>\\({\\mathcal {A}}\\)</span> by means of the elements of generalized state space <span>\\({\\mathcal {S}}_a({\\mathcal {A}})\\)</span> is provided. As an application, a characterization for the best approximation to elements of <span>\\({\\mathcal {A}}\\)</span> in a subspace <span>\\({\\mathcal {B}}\\)</span> with respect to <span>\\(\\Vert \\cdot \\Vert _a\\)</span> is obtained. Moreover, a formula for the distance of an element of <span>\\({\\mathcal {A}}\\)</span> to the subspace <span>\\({\\mathcal {B}}={\\mathbb {C}}1_{{\\mathcal {A}}}\\)</span> is given. We also study the strong version of <i>a</i>-Birkhoff–James orthogonality in <span>\\( {\\mathcal {A}} .\\)</span> The classes of <span>\\(C^*\\)</span>-algebras in which these two types orthogonality relationships coincide are described. In particular, we prove that the condition of the equivalence between the strong <i>a</i>-Birkhoff–James orthogonality and <span>\\({\\mathcal {A}}\\)</span>-valued inner product orthogonality in <span>\\({\\mathcal {A}}\\)</span> implies that the center of <span>\\({\\mathcal {A}}\\)</span> is trivial. Finally, we show that if the (strong) <i>a</i>-Birkhoff–James orthogonality is right-additive (left-additive) in <span>\\({\\mathcal {A}},\\)</span> then the center of <span>\\({\\mathcal {A}}\\)</span> is trivial.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of a-Birkhoff–James orthogonality in \\\\(C^*\\\\)-algebras and its applications\",\"authors\":\"Hooriye Sadat Jalali Ghamsari,&nbsp;Mahdi Dehghani\",\"doi\":\"10.1007/s43034-024-00339-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\({\\\\mathcal {A}}\\\\)</span> be a unital <span>\\\\(C^*\\\\)</span>-algebra with unit <span>\\\\(1_{{\\\\mathcal {A}}}\\\\)</span> and let <span>\\\\(a\\\\in {\\\\mathcal {A}}\\\\)</span> be a positive and invertible element. Suppose that <span>\\\\({\\\\mathcal {S}}({\\\\mathcal {A}})\\\\)</span> is the set of all states on <span>\\\\(\\\\mathcal {{\\\\mathcal {A}}}\\\\)</span> and let </p><div><div><span>$$\\\\begin{aligned} {\\\\mathcal {S}}_a ({\\\\mathcal {A}})=\\\\left\\\\{ \\\\dfrac{f}{f(a)} \\\\, : \\\\, f \\\\in {\\\\mathcal {S}}({\\\\mathcal {A}}), \\\\, f(a)\\\\ne 0\\\\right\\\\} . \\\\end{aligned}$$</span></div></div><p>The norm <span>\\\\( \\\\Vert x\\\\Vert _a \\\\)</span> for every <span>\\\\( x \\\\in {\\\\mathcal {A}} \\\\)</span> is defined by </p><div><div><span>$$\\\\begin{aligned} \\\\Vert x\\\\Vert _a = \\\\sup _{\\\\varphi \\\\in {\\\\mathcal {S}}_a ({\\\\mathcal {A}}) } \\\\sqrt{\\\\varphi (x^* ax)}. \\\\end{aligned}$$</span></div></div><p>In this paper, we aim to investigate the notion of Birkhoff–James orthogonality with respect to the norm <span>\\\\(\\\\Vert \\\\cdot \\\\Vert _a\\\\)</span> in <span>\\\\({\\\\mathcal {A}},\\\\)</span> namely <i>a</i>-Birkhoff–James orthogonality. The characterization of <i>a</i>-Birkhoff–James orthogonality in <span>\\\\({\\\\mathcal {A}}\\\\)</span> by means of the elements of generalized state space <span>\\\\({\\\\mathcal {S}}_a({\\\\mathcal {A}})\\\\)</span> is provided. As an application, a characterization for the best approximation to elements of <span>\\\\({\\\\mathcal {A}}\\\\)</span> in a subspace <span>\\\\({\\\\mathcal {B}}\\\\)</span> with respect to <span>\\\\(\\\\Vert \\\\cdot \\\\Vert _a\\\\)</span> is obtained. Moreover, a formula for the distance of an element of <span>\\\\({\\\\mathcal {A}}\\\\)</span> to the subspace <span>\\\\({\\\\mathcal {B}}={\\\\mathbb {C}}1_{{\\\\mathcal {A}}}\\\\)</span> is given. We also study the strong version of <i>a</i>-Birkhoff–James orthogonality in <span>\\\\( {\\\\mathcal {A}} .\\\\)</span> The classes of <span>\\\\(C^*\\\\)</span>-algebras in which these two types orthogonality relationships coincide are described. In particular, we prove that the condition of the equivalence between the strong <i>a</i>-Birkhoff–James orthogonality and <span>\\\\({\\\\mathcal {A}}\\\\)</span>-valued inner product orthogonality in <span>\\\\({\\\\mathcal {A}}\\\\)</span> implies that the center of <span>\\\\({\\\\mathcal {A}}\\\\)</span> is trivial. Finally, we show that if the (strong) <i>a</i>-Birkhoff–James orthogonality is right-additive (left-additive) in <span>\\\\({\\\\mathcal {A}},\\\\)</span> then the center of <span>\\\\({\\\\mathcal {A}}\\\\)</span> is trivial.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00339-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00339-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 让 \({\mathcal {A}}\) 是一个具有单位 \(1_{\mathcal {A}}\) 的单价 \(C^*\) -代数,并且让 \(a\in {\mathcal {A}}\) 是一个正的可逆元素。假设 \({\mathcal {S}}({\mathcal {A}})\) 是 \(\mathcal {{mathcal {A}}) 上所有状态的集合,并让 $$\begin{aligned} {\mathcal {S}}_a ({\mathcal {A}})=\left\{ \dfrac{f}{f(a)} \, :\, f \in {\mathcal {S}}({\mathcal {A}}), \, f(a)\ne 0\right\} .\end{aligned}$$ 对于每一个 x 在 {\mathcal {A} 中的 norm \( \Vert x\Vert _a \)的定义是:$$begin{aligned}。\Vert x\Vert _a = \sup _{\varphi \ in {\mathcal {S}}_a ({\mathcal {A}}) }\sqrt {varphi (x^* ax)}.\end{aligned}$$ 本文旨在研究关于 \({\mathcal {A}},\) 中规范 \(\Vert \cdot \Vert _a\) 的伯克霍夫-詹姆斯正交概念,即 a-Birkhoff-James orthogonality。通过广义状态空间 \({\mathcal {S}}_a({\mathcal {A}})\) 的元素,提供了 \({\mathcal {A}}) 中 a-Birkhoff-James 正交性的特征。作为应用,得到了子空间 \({\mathcal {B}}\) 中关于 \(\Vert \cdot \Vert _a\) 的 \({\mathcal {A}}\) 元素的最佳近似值。此外,还给出了 \({\mathcal {A}}) 的元素到子空间 \({\mathcal {B}}={\mathbb {C}}1_{{\mathcal {A}}}\) 的距离公式。我们还研究了 \( {\mathcal {A}} .\) 中的强版伯克霍夫-詹姆斯正交性。 我们描述了这两类正交关系重合的 \(C^*\) -代数的类。我们特别证明了在\({\mathcal {A}}\)中强伯克霍夫-詹姆斯正交性和\({\mathcal {A}}\)值内积正交性之间的等价条件意味着\({\mathcal {A}}\)的中心是微不足道的。最后,我们证明如果(强)伯克霍夫-詹姆斯正交性在({\mathcal {A}},\)中是右加(左加)的,那么({\mathcal {A}}\)的中心是微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of a-Birkhoff–James orthogonality in \(C^*\)-algebras and its applications

Let \({\mathcal {A}}\) be a unital \(C^*\)-algebra with unit \(1_{{\mathcal {A}}}\) and let \(a\in {\mathcal {A}}\) be a positive and invertible element. Suppose that \({\mathcal {S}}({\mathcal {A}})\) is the set of all states on \(\mathcal {{\mathcal {A}}}\) and let

$$\begin{aligned} {\mathcal {S}}_a ({\mathcal {A}})=\left\{ \dfrac{f}{f(a)} \, : \, f \in {\mathcal {S}}({\mathcal {A}}), \, f(a)\ne 0\right\} . \end{aligned}$$

The norm \( \Vert x\Vert _a \) for every \( x \in {\mathcal {A}} \) is defined by

$$\begin{aligned} \Vert x\Vert _a = \sup _{\varphi \in {\mathcal {S}}_a ({\mathcal {A}}) } \sqrt{\varphi (x^* ax)}. \end{aligned}$$

In this paper, we aim to investigate the notion of Birkhoff–James orthogonality with respect to the norm \(\Vert \cdot \Vert _a\) in \({\mathcal {A}},\) namely a-Birkhoff–James orthogonality. The characterization of a-Birkhoff–James orthogonality in \({\mathcal {A}}\) by means of the elements of generalized state space \({\mathcal {S}}_a({\mathcal {A}})\) is provided. As an application, a characterization for the best approximation to elements of \({\mathcal {A}}\) in a subspace \({\mathcal {B}}\) with respect to \(\Vert \cdot \Vert _a\) is obtained. Moreover, a formula for the distance of an element of \({\mathcal {A}}\) to the subspace \({\mathcal {B}}={\mathbb {C}}1_{{\mathcal {A}}}\) is given. We also study the strong version of a-Birkhoff–James orthogonality in \( {\mathcal {A}} .\) The classes of \(C^*\)-algebras in which these two types orthogonality relationships coincide are described. In particular, we prove that the condition of the equivalence between the strong a-Birkhoff–James orthogonality and \({\mathcal {A}}\)-valued inner product orthogonality in \({\mathcal {A}}\) implies that the center of \({\mathcal {A}}\) is trivial. Finally, we show that if the (strong) a-Birkhoff–James orthogonality is right-additive (left-additive) in \({\mathcal {A}},\) then the center of \({\mathcal {A}}\) is trivial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信