量化巴拿赫空间中角距和斜角距差异的几何常数

IF 1.2 3区 数学 Q1 MATHEMATICS
Yuankang Fu, Yongjin Li
{"title":"量化巴拿赫空间中角距和斜角距差异的几何常数","authors":"Yuankang Fu,&nbsp;Yongjin Li","doi":"10.1007/s43034-024-00341-0","DOIUrl":null,"url":null,"abstract":"<div><p>This article is devoted to introduce a new geometric constant called Dehghan–Rooin constant, which quantifies the difference between angular and skew angular distances in Banach spaces. We quantify the characterization of uniform non-squareness in terms of Dehghan–Rooin constant. The relationships between Dehghan–Rooin constant and uniform convexity, Dehghan-Rooin constant and uniform smoothness are also studied. Moreover, some new sufficient conditions for uniform normal structure are also established in terms of Dehghan–Rooin constant.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric constant for quantifying the difference between angular and skew angular distances in Banach spaces\",\"authors\":\"Yuankang Fu,&nbsp;Yongjin Li\",\"doi\":\"10.1007/s43034-024-00341-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article is devoted to introduce a new geometric constant called Dehghan–Rooin constant, which quantifies the difference between angular and skew angular distances in Banach spaces. We quantify the characterization of uniform non-squareness in terms of Dehghan–Rooin constant. The relationships between Dehghan–Rooin constant and uniform convexity, Dehghan-Rooin constant and uniform smoothness are also studied. Moreover, some new sufficient conditions for uniform normal structure are also established in terms of Dehghan–Rooin constant.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00341-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00341-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于介绍一个新的几何常数,即 Dehghan-Rooin 常数,它量化了巴拿赫空间中角距离和斜角距离之间的差异。我们用 Dehghan-Rooin 常数量化了均匀非平方性的特征。我们还研究了 Dehghan-Rooin 常数与均匀凸性、Dehghan-Rooin 常数与均匀平滑性之间的关系。此外,还根据 Dehghan-Rooin 常数建立了均匀法向结构的一些新的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric constant for quantifying the difference between angular and skew angular distances in Banach spaces

This article is devoted to introduce a new geometric constant called Dehghan–Rooin constant, which quantifies the difference between angular and skew angular distances in Banach spaces. We quantify the characterization of uniform non-squareness in terms of Dehghan–Rooin constant. The relationships between Dehghan–Rooin constant and uniform convexity, Dehghan-Rooin constant and uniform smoothness are also studied. Moreover, some new sufficient conditions for uniform normal structure are also established in terms of Dehghan–Rooin constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信