论布拉德群 $$B_n$$ 局部表示的不可还原性

IF 0.9 Q2 MATHEMATICS
Mohammad Y. Chreif, Malak M. Dally
{"title":"论布拉德群 $$B_n$$ 局部表示的不可还原性","authors":"Mohammad Y. Chreif,&nbsp;Malak M. Dally","doi":"10.1007/s40065-024-00461-4","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that any homogeneous local representation <span>\\(\\varphi :B_n \\rightarrow GL_n(\\mathbb {C})\\)</span> of type 1 or 2 of dimension <span>\\(n\\ge 6\\)</span> is reducible. Then, we prove that any representation <span>\\(\\varphi :B_n \\rightarrow GL_n(\\mathbb {C})\\)</span> of type 3 is equivalent to a complex specialization of the standard representation <span>\\(\\tau _n\\)</span>. Also, we study the irreducibility of all local linear representations of the braid group <span>\\(B_3\\)</span> of degree 3. We prove that any local representation of type 1 of <span>\\(B_3\\)</span> is reducible to a Burau type representation and that any local representation of type 2 of <span>\\(B_3\\)</span> is equivalent to a complex specialization of the standard representation. Moreover, we construct a representation of <span>\\(B_3\\)</span> of degree 6 using the tensor product of local representations of type 2. Let <span>\\(u_i\\)</span>, <span>\\(i=1,2\\)</span>, be non-zero complex numbers on the unit circle. We determine a necessary and sufficient condition that guarantees the irreducibility of the obtained representation.</p></div>","PeriodicalId":54135,"journal":{"name":"Arabian Journal of Mathematics","volume":"13 2","pages":"263 - 273"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40065-024-00461-4.pdf","citationCount":"0","resultStr":"{\"title\":\"On the irreducibility of local representations of the Braid group \\\\(B_n\\\\)\",\"authors\":\"Mohammad Y. Chreif,&nbsp;Malak M. Dally\",\"doi\":\"10.1007/s40065-024-00461-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that any homogeneous local representation <span>\\\\(\\\\varphi :B_n \\\\rightarrow GL_n(\\\\mathbb {C})\\\\)</span> of type 1 or 2 of dimension <span>\\\\(n\\\\ge 6\\\\)</span> is reducible. Then, we prove that any representation <span>\\\\(\\\\varphi :B_n \\\\rightarrow GL_n(\\\\mathbb {C})\\\\)</span> of type 3 is equivalent to a complex specialization of the standard representation <span>\\\\(\\\\tau _n\\\\)</span>. Also, we study the irreducibility of all local linear representations of the braid group <span>\\\\(B_3\\\\)</span> of degree 3. We prove that any local representation of type 1 of <span>\\\\(B_3\\\\)</span> is reducible to a Burau type representation and that any local representation of type 2 of <span>\\\\(B_3\\\\)</span> is equivalent to a complex specialization of the standard representation. Moreover, we construct a representation of <span>\\\\(B_3\\\\)</span> of degree 6 using the tensor product of local representations of type 2. Let <span>\\\\(u_i\\\\)</span>, <span>\\\\(i=1,2\\\\)</span>, be non-zero complex numbers on the unit circle. We determine a necessary and sufficient condition that guarantees the irreducibility of the obtained representation.</p></div>\",\"PeriodicalId\":54135,\"journal\":{\"name\":\"Arabian Journal of Mathematics\",\"volume\":\"13 2\",\"pages\":\"263 - 273\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40065-024-00461-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40065-024-00461-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40065-024-00461-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明维数为1或2的任何同质局部表示((\varphi :B_n \rightarrow GL_n(\mathbb {C}))都是可还原的。然后,我们证明任何类型 3 的表示 (\varphi :B_n \rightarrow GL_n(\mathbb {C}))都等价于标准表示 (\tau _n\)的复杂特化。我们证明了任何 \(B_3\) 类型 1 的局部表示都可以还原为布劳型表示,任何 \(B_3\) 类型 2 的局部表示都等价于标准表示的复特殊化。此外,我们使用第 2 类局部表示的张量乘积构造了一个阶数为 6 的 \(B_3\) 表示。让 \(u_i\), \(i=1,2\), 都是单位圆上的非零复数。我们确定了保证所得表示不可还原的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the irreducibility of local representations of the Braid group \(B_n\)

We prove that any homogeneous local representation \(\varphi :B_n \rightarrow GL_n(\mathbb {C})\) of type 1 or 2 of dimension \(n\ge 6\) is reducible. Then, we prove that any representation \(\varphi :B_n \rightarrow GL_n(\mathbb {C})\) of type 3 is equivalent to a complex specialization of the standard representation \(\tau _n\). Also, we study the irreducibility of all local linear representations of the braid group \(B_3\) of degree 3. We prove that any local representation of type 1 of \(B_3\) is reducible to a Burau type representation and that any local representation of type 2 of \(B_3\) is equivalent to a complex specialization of the standard representation. Moreover, we construct a representation of \(B_3\) of degree 6 using the tensor product of local representations of type 2. Let \(u_i\), \(i=1,2\), be non-zero complex numbers on the unit circle. We determine a necessary and sufficient condition that guarantees the irreducibility of the obtained representation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
8.30%
发文量
48
审稿时长
13 weeks
期刊介绍: The Arabian Journal of Mathematics is a quarterly, peer-reviewed open access journal published under the SpringerOpen brand, covering all mainstream branches of pure and applied mathematics. Owned by King Fahd University of Petroleum and Minerals, AJM publishes carefully refereed research papers in all main-stream branches of pure and applied mathematics. Survey papers may be submitted for publication by invitation only.To be published in AJM, a paper should be a significant contribution to the mathematics literature, well-written, and of interest to a wide audience. All manuscripts will undergo a strict refereeing process; acceptance for publication is based on two positive reviews from experts in the field.Submission of a manuscript acknowledges that the manuscript is original and is not, in whole or in part, published or submitted for publication elsewhere. A copyright agreement is required before the publication of the paper.Manuscripts must be written in English. It is the author''s responsibility to make sure her/his manuscript is written in clear, unambiguous and grammatically correct language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信