利用基于 LLM 的多代理框架加强金融市场异常检测

Taejin Park
{"title":"利用基于 LLM 的多代理框架加强金融市场异常检测","authors":"Taejin Park","doi":"arxiv-2403.19735","DOIUrl":null,"url":null,"abstract":"This paper introduces a Large Language Model (LLM)-based multi-agent\nframework designed to enhance anomaly detection within financial market data,\ntackling the longstanding challenge of manually verifying system-generated\nanomaly alerts. The framework harnesses a collaborative network of AI agents,\neach specialised in distinct functions including data conversion, expert\nanalysis via web research, institutional knowledge utilization or\ncross-checking and report consolidation and management roles. By coordinating\nthese agents towards a common objective, the framework provides a comprehensive\nand automated approach for validating and interpreting financial data\nanomalies. I analyse the S&P 500 index to demonstrate the framework's\nproficiency in enhancing the efficiency, accuracy and reduction of human\nintervention in financial market monitoring. The integration of AI's autonomous\nfunctionalities with established analytical methods not only underscores the\nframework's effectiveness in anomaly detection but also signals its broader\napplicability in supporting financial market monitoring.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework\",\"authors\":\"Taejin Park\",\"doi\":\"arxiv-2403.19735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a Large Language Model (LLM)-based multi-agent\\nframework designed to enhance anomaly detection within financial market data,\\ntackling the longstanding challenge of manually verifying system-generated\\nanomaly alerts. The framework harnesses a collaborative network of AI agents,\\neach specialised in distinct functions including data conversion, expert\\nanalysis via web research, institutional knowledge utilization or\\ncross-checking and report consolidation and management roles. By coordinating\\nthese agents towards a common objective, the framework provides a comprehensive\\nand automated approach for validating and interpreting financial data\\nanomalies. I analyse the S&P 500 index to demonstrate the framework's\\nproficiency in enhancing the efficiency, accuracy and reduction of human\\nintervention in financial market monitoring. The integration of AI's autonomous\\nfunctionalities with established analytical methods not only underscores the\\nframework's effectiveness in anomaly detection but also signals its broader\\napplicability in supporting financial market monitoring.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.19735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.19735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个基于大语言模型(LLM)的多代理框架,旨在加强金融市场数据中的异常检测,解决长期以来人工验证系统生成的异常警报的难题。该框架利用人工智能代理的协作网络,每个代理都擅长不同的功能,包括数据转换、通过网络研究进行专家分析、机构知识利用或交叉检查以及报告合并和管理。通过协调这些代理实现共同目标,该框架为验证和解释金融数据异常提供了一种全面的自动化方法。我分析了标准普尔 500 指数,以展示该框架在提高金融市场监控的效率、准确性和减少人工干预方面的能力。将人工智能的自主功能与成熟的分析方法相结合,不仅凸显了该框架在异常检测方面的有效性,也预示着它在支持金融市场监测方面具有更广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Anomaly Detection in Financial Markets with an LLM-based Multi-Agent Framework
This paper introduces a Large Language Model (LLM)-based multi-agent framework designed to enhance anomaly detection within financial market data, tackling the longstanding challenge of manually verifying system-generated anomaly alerts. The framework harnesses a collaborative network of AI agents, each specialised in distinct functions including data conversion, expert analysis via web research, institutional knowledge utilization or cross-checking and report consolidation and management roles. By coordinating these agents towards a common objective, the framework provides a comprehensive and automated approach for validating and interpreting financial data anomalies. I analyse the S&P 500 index to demonstrate the framework's proficiency in enhancing the efficiency, accuracy and reduction of human intervention in financial market monitoring. The integration of AI's autonomous functionalities with established analytical methods not only underscores the framework's effectiveness in anomaly detection but also signals its broader applicability in supporting financial market monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信