压力梯度可变时的 Carreau-Yasuda 流体的 Poiseuille 流动

Nilolay Kutev, Sonia Tabakova
{"title":"压力梯度可变时的 Carreau-Yasuda 流体的 Poiseuille 流动","authors":"Nilolay Kutev, Sonia Tabakova","doi":"10.1002/zamm.202300555","DOIUrl":null,"url":null,"abstract":"The unsteady Poiseuille flow of Carreau‐Yasuda fluid in a pipe, caused by a variable pressure gradient, is studied theoretically. As a special case, the steady flow is considered separately. It is proved that at some values of the viscosity model parameters, the problem has a generalized solution, while at others ‐ a classical solution. For the latter, a necessary and sufficient condition is found, which depends on the maximum pressure gradient and the Carreau‐Yasuda model parameters.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poiseuille flow of Carreau‐Yasuda fluid at variable pressure gradient\",\"authors\":\"Nilolay Kutev, Sonia Tabakova\",\"doi\":\"10.1002/zamm.202300555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unsteady Poiseuille flow of Carreau‐Yasuda fluid in a pipe, caused by a variable pressure gradient, is studied theoretically. As a special case, the steady flow is considered separately. It is proved that at some values of the viscosity model parameters, the problem has a generalized solution, while at others ‐ a classical solution. For the latter, a necessary and sufficient condition is found, which depends on the maximum pressure gradient and the Carreau‐Yasuda model parameters.\",\"PeriodicalId\":501230,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论上研究了由可变压力梯度引起的 Carreau-Yasuda 流体在管道中的非稳态 Poiseuille 流动。作为特例,还单独考虑了稳定流。研究证明,在粘度模型参数的某些值上,问题有广义解,而在其他值上则有经典解。对于后者,找到了一个必要和充分条件,它取决于最大压力梯度和 Carreau-Yasuda 模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poiseuille flow of Carreau‐Yasuda fluid at variable pressure gradient
The unsteady Poiseuille flow of Carreau‐Yasuda fluid in a pipe, caused by a variable pressure gradient, is studied theoretically. As a special case, the steady flow is considered separately. It is proved that at some values of the viscosity model parameters, the problem has a generalized solution, while at others ‐ a classical solution. For the latter, a necessary and sufficient condition is found, which depends on the maximum pressure gradient and the Carreau‐Yasuda model parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信