通过统计学习确定聚酯材料的定量结构-性能关系

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Stephen McCoy, Damilola Ojedeji, Brendan Abolins, Cameron Brown, Manolis Doxastakis, Ioannis Sgouralis
{"title":"通过统计学习确定聚酯材料的定量结构-性能关系","authors":"Stephen McCoy,&nbsp;Damilola Ojedeji,&nbsp;Brendan Abolins,&nbsp;Cameron Brown,&nbsp;Manolis Doxastakis,&nbsp;Ioannis Sgouralis","doi":"10.1002/mats.202400008","DOIUrl":null,"url":null,"abstract":"<p>Statistical learning is employed to present a principled framework for the establishment of quantitative structure-property relationships (QSPR). Property predictions of industrial polymers formed by multiple reagents and at varying molecular weights are focused. A theoretical description of QSPR as well as a rigorous mathematical method is developed for the assimilation of experimental data. Results show that these methods can perform exceptionally well at establishing QSPR for glass transition temperature and intrinsic viscosity of polyesters.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400008","citationCount":"0","resultStr":"{\"title\":\"Quantitative Structure-Property Relations for Polyester Materials via Statistical Learning\",\"authors\":\"Stephen McCoy,&nbsp;Damilola Ojedeji,&nbsp;Brendan Abolins,&nbsp;Cameron Brown,&nbsp;Manolis Doxastakis,&nbsp;Ioannis Sgouralis\",\"doi\":\"10.1002/mats.202400008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Statistical learning is employed to present a principled framework for the establishment of quantitative structure-property relationships (QSPR). Property predictions of industrial polymers formed by multiple reagents and at varying molecular weights are focused. A theoretical description of QSPR as well as a rigorous mathematical method is developed for the assimilation of experimental data. Results show that these methods can perform exceptionally well at establishing QSPR for glass transition temperature and intrinsic viscosity of polyesters.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":\"33 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们利用统计学习提出了一个建立定量结构-性能关系(QSPR)的原则性框架。我们重点关注由多种试剂和不同分子量形成的工业聚合物的性质预测。我们开发了 QSPR 的理论描述以及用于吸收实验数据的严格数学方法。结果表明,我们的方法在建立聚酯玻璃化转变温度和固有粘度的 QSPR 方面表现优异。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantitative Structure-Property Relations for Polyester Materials via Statistical Learning

Quantitative Structure-Property Relations for Polyester Materials via Statistical Learning

Statistical learning is employed to present a principled framework for the establishment of quantitative structure-property relationships (QSPR). Property predictions of industrial polymers formed by multiple reagents and at varying molecular weights are focused. A theoretical description of QSPR as well as a rigorous mathematical method is developed for the assimilation of experimental data. Results show that these methods can perform exceptionally well at establishing QSPR for glass transition temperature and intrinsic viscosity of polyesters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信