基于仿真的织物结构对各种二维编织复合材料导热性影响的评估

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Abdulrahman Alghamdi
{"title":"基于仿真的织物结构对各种二维编织复合材料导热性影响的评估","authors":"Abdulrahman Alghamdi","doi":"10.1177/15280837241247341","DOIUrl":null,"url":null,"abstract":"The thermal conductivities of woven composites are strongly affected by the anisotropic properties of the reinforcing fibers, and thus by the fabric structure. In this study, the thermal conductivity of 2D woven composites was investigated by optimizing the fabric structures to enhance the through-thickness and in-plane thermal conductivities. Multiscale finite element models were developed to simulate the thermal behavior of various 2D fabric structures and evaluate their thermal performance under varying conditions, focusing on the effects of fiber tow undulation, dry-zone porosity, and matrix-rich zones. Fabric architectures were selected based on common 2D weavings of composites. The results showed that the tow undulation substantially enhanced the through-thickness conductivity and mitigated the impact of porosity. In addition, a higher tow anisotropy increased the effect of undulation. Moreover, the plain-weave fabric structures exhibited the highest through-thickness and in-plane thermal conductivities among the evaluated 2D woven fabrics in porous composites. Finally, the matrix-rich zones showed a stronger effect on the through-thickness than on the in-plane thermal conductivity of the 2D woven composites.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation-based evaluation of effects of fabric structure on thermal conductivity of various 2D woven composites\",\"authors\":\"Abdulrahman Alghamdi\",\"doi\":\"10.1177/15280837241247341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal conductivities of woven composites are strongly affected by the anisotropic properties of the reinforcing fibers, and thus by the fabric structure. In this study, the thermal conductivity of 2D woven composites was investigated by optimizing the fabric structures to enhance the through-thickness and in-plane thermal conductivities. Multiscale finite element models were developed to simulate the thermal behavior of various 2D fabric structures and evaluate their thermal performance under varying conditions, focusing on the effects of fiber tow undulation, dry-zone porosity, and matrix-rich zones. Fabric architectures were selected based on common 2D weavings of composites. The results showed that the tow undulation substantially enhanced the through-thickness conductivity and mitigated the impact of porosity. In addition, a higher tow anisotropy increased the effect of undulation. Moreover, the plain-weave fabric structures exhibited the highest through-thickness and in-plane thermal conductivities among the evaluated 2D woven fabrics in porous composites. Finally, the matrix-rich zones showed a stronger effect on the through-thickness than on the in-plane thermal conductivity of the 2D woven composites.\",\"PeriodicalId\":16097,\"journal\":{\"name\":\"Journal of Industrial Textiles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Textiles\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/15280837241247341\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837241247341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

摘要

编织复合材料的导热性受增强纤维各向异性的影响很大,因此也受织物结构的影响。在本研究中,通过优化织物结构来提高织物的厚度热导率和平面热导率,从而研究了二维编织复合材料的热导率。研究人员开发了多尺度有限元模型来模拟各种二维织物结构的热行为,并评估其在不同条件下的热性能,重点关注纤维束起伏、干区孔隙率和基质富集区的影响。织物结构是根据常见的二维编织复合材料选择的。结果表明,纤维缆的起伏大大提高了厚度传导性,减轻了多孔性的影响。此外,较高的丝束各向异性也会增加起伏的效果。此外,在所评估的多孔复合材料二维编织物中,平纹编织物结构表现出最高的通厚导热率和平面内导热率。最后,富含基质的区域对二维编织复合材料的通厚热导率的影响比平面内热导率的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation-based evaluation of effects of fabric structure on thermal conductivity of various 2D woven composites
The thermal conductivities of woven composites are strongly affected by the anisotropic properties of the reinforcing fibers, and thus by the fabric structure. In this study, the thermal conductivity of 2D woven composites was investigated by optimizing the fabric structures to enhance the through-thickness and in-plane thermal conductivities. Multiscale finite element models were developed to simulate the thermal behavior of various 2D fabric structures and evaluate their thermal performance under varying conditions, focusing on the effects of fiber tow undulation, dry-zone porosity, and matrix-rich zones. Fabric architectures were selected based on common 2D weavings of composites. The results showed that the tow undulation substantially enhanced the through-thickness conductivity and mitigated the impact of porosity. In addition, a higher tow anisotropy increased the effect of undulation. Moreover, the plain-weave fabric structures exhibited the highest through-thickness and in-plane thermal conductivities among the evaluated 2D woven fabrics in porous composites. Finally, the matrix-rich zones showed a stronger effect on the through-thickness than on the in-plane thermal conductivity of the 2D woven composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信