不同补给水温度下生物积木对饱和多孔介质导水性的影响

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Shilin Wang, Liping Chen, Yanfeng Gong, Suning Ma, Yong Yang
{"title":"不同补给水温度下生物积木对饱和多孔介质导水性的影响","authors":"Shilin Wang, Liping Chen, Yanfeng Gong, Suning Ma, Yong Yang","doi":"10.1007/s10040-024-02785-z","DOIUrl":null,"url":null,"abstract":"<p>Bioclogging in porous media is common and affects many engineering projects. The temperature of recharge water could significantly affect the process of bioclogging, thus impacting the hydraulic conductivity of porous media. In this study, a series of laboratory percolation experiments was conducted to understand the effects of recharge water temperature. The results of these experiments showed that bioclogging evolved in phases, and the gradual reduction (attenuation) of hydraulic conductivity caused by bioclogging could be described by an inverse logistic model. Analysis of microbial growth suggested that the bioclogging phases were strongly correlated with microbial growth stages. Both the clogging rate and degree of clogging through the seepage column decreased with distance from the inlet. Within the range of 10–25 ℃, the degree of clogging decreased with the increasing recharge water temperature; however, the degree of clogging increased with recharge water temperature within the range of 25–35 ℃. The relative hydraulic conductivity values decreased by 86.9% at a recharge water temperature of 10 ℃, 76.0% at 15 ℃, 65.1% at 20 ℃, 44.9% at 25 ℃, 82.5% at 30 ℃ and 98.7% at 35 ℃. Investigation by scanning electron microscopy found that the microorganism micromorphology differed at different recharge water temperatures, which made a significant difference in terms of clogging degree. A comprehensive model that describes hydraulic conductivity attenuation with varying recharge water temperature has been developed.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":"67 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of bioclogging on the hydraulic conductivity of saturated porous media at different recharge water temperatures\",\"authors\":\"Shilin Wang, Liping Chen, Yanfeng Gong, Suning Ma, Yong Yang\",\"doi\":\"10.1007/s10040-024-02785-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioclogging in porous media is common and affects many engineering projects. The temperature of recharge water could significantly affect the process of bioclogging, thus impacting the hydraulic conductivity of porous media. In this study, a series of laboratory percolation experiments was conducted to understand the effects of recharge water temperature. The results of these experiments showed that bioclogging evolved in phases, and the gradual reduction (attenuation) of hydraulic conductivity caused by bioclogging could be described by an inverse logistic model. Analysis of microbial growth suggested that the bioclogging phases were strongly correlated with microbial growth stages. Both the clogging rate and degree of clogging through the seepage column decreased with distance from the inlet. Within the range of 10–25 ℃, the degree of clogging decreased with the increasing recharge water temperature; however, the degree of clogging increased with recharge water temperature within the range of 25–35 ℃. The relative hydraulic conductivity values decreased by 86.9% at a recharge water temperature of 10 ℃, 76.0% at 15 ℃, 65.1% at 20 ℃, 44.9% at 25 ℃, 82.5% at 30 ℃ and 98.7% at 35 ℃. Investigation by scanning electron microscopy found that the microorganism micromorphology differed at different recharge water temperatures, which made a significant difference in terms of clogging degree. A comprehensive model that describes hydraulic conductivity attenuation with varying recharge water temperature has been developed.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02785-z\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02785-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多孔介质中的生物积水现象很常见,对许多工程项目都有影响。补给水的温度会极大地影响生物积水过程,从而影响多孔介质的水力传导性。本研究进行了一系列实验室渗流实验,以了解补给水温度的影响。实验结果表明,生物积涝是分阶段发生的,生物积涝导致的水力传导性逐渐降低(衰减)可以用一个逆对数模型来描述。微生物生长分析表明,生物堵塞阶段与微生物生长阶段密切相关。渗流柱的堵塞率和堵塞程度均随与入口距离的增加而降低。在 10-25 ℃ 范围内,堵塞程度随补给水温度的升高而降低;但在 25-35 ℃ 范围内,堵塞程度随补给水温度的升高而增加。在补给水温度为 10 ℃ 时,相对水力传导率值下降了 86.9%;在 15 ℃ 时,下降了 76.0%;在 20 ℃ 时,下降了 65.1%;在 25 ℃ 时,下降了 44.9%;在 30 ℃ 时,下降了 82.5%;在 35 ℃ 时,下降了 98.7%。扫描电子显微镜研究发现,在不同的补给水温度下,微生物的微观形态不同,堵塞程度也有显著差异。研究建立了一个全面的模型,用于描述补给水温度变化时的水力传导衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of bioclogging on the hydraulic conductivity of saturated porous media at different recharge water temperatures

Bioclogging in porous media is common and affects many engineering projects. The temperature of recharge water could significantly affect the process of bioclogging, thus impacting the hydraulic conductivity of porous media. In this study, a series of laboratory percolation experiments was conducted to understand the effects of recharge water temperature. The results of these experiments showed that bioclogging evolved in phases, and the gradual reduction (attenuation) of hydraulic conductivity caused by bioclogging could be described by an inverse logistic model. Analysis of microbial growth suggested that the bioclogging phases were strongly correlated with microbial growth stages. Both the clogging rate and degree of clogging through the seepage column decreased with distance from the inlet. Within the range of 10–25 ℃, the degree of clogging decreased with the increasing recharge water temperature; however, the degree of clogging increased with recharge water temperature within the range of 25–35 ℃. The relative hydraulic conductivity values decreased by 86.9% at a recharge water temperature of 10 ℃, 76.0% at 15 ℃, 65.1% at 20 ℃, 44.9% at 25 ℃, 82.5% at 30 ℃ and 98.7% at 35 ℃. Investigation by scanning electron microscopy found that the microorganism micromorphology differed at different recharge water temperatures, which made a significant difference in terms of clogging degree. A comprehensive model that describes hydraulic conductivity attenuation with varying recharge water temperature has been developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信