Youngro Lee;Jongae Park;Sungjoon Park;Jongmo Seo;Hae-Young Lee
{"title":"通过前后校准差异分析手表式血压测量的稳定性","authors":"Youngro Lee;Jongae Park;Sungjoon Park;Jongmo Seo;Hae-Young Lee","doi":"10.1109/OJEMB.2024.3384488","DOIUrl":null,"url":null,"abstract":"Recent advancements in smartwatch technology have introduced photoplethysmography (PPG)-based blood pressure (BP) estimation, enabling convenient and continuous monitoring of BP. However, concerns about accuracy and validation for clinical use persist. This study uses real-world data from a Samsung Galaxy Watch campaign to assess smartwatch-based BP measurements. The approach examines calibration stability by comparing average systolic BP (SBP) before and after calibration, identifying factors affecting stability through regression analysis. User-level strategies are suggested to mitigate calibration instability and emphasize guideline adherence. Notably, calibration instability is found to decrease during night-time measurements and when averaging multiple readings in the same time frame. Guideline adherence is vital, particularly for the elderly, females, and individuals with hypertension. The research enhances measurement reliability through extensive datasets, shedding light on calibration stability.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"828-836"},"PeriodicalIF":2.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490153","citationCount":"0","resultStr":"{\"title\":\"Stability of Watch-Based Blood Pressure Measurements Analyzed by Pre-Post Calibration Differences\",\"authors\":\"Youngro Lee;Jongae Park;Sungjoon Park;Jongmo Seo;Hae-Young Lee\",\"doi\":\"10.1109/OJEMB.2024.3384488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in smartwatch technology have introduced photoplethysmography (PPG)-based blood pressure (BP) estimation, enabling convenient and continuous monitoring of BP. However, concerns about accuracy and validation for clinical use persist. This study uses real-world data from a Samsung Galaxy Watch campaign to assess smartwatch-based BP measurements. The approach examines calibration stability by comparing average systolic BP (SBP) before and after calibration, identifying factors affecting stability through regression analysis. User-level strategies are suggested to mitigate calibration instability and emphasize guideline adherence. Notably, calibration instability is found to decrease during night-time measurements and when averaging multiple readings in the same time frame. Guideline adherence is vital, particularly for the elderly, females, and individuals with hypertension. The research enhances measurement reliability through extensive datasets, shedding light on calibration stability.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"5 \",\"pages\":\"828-836\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10490153\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10490153/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10490153/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Stability of Watch-Based Blood Pressure Measurements Analyzed by Pre-Post Calibration Differences
Recent advancements in smartwatch technology have introduced photoplethysmography (PPG)-based blood pressure (BP) estimation, enabling convenient and continuous monitoring of BP. However, concerns about accuracy and validation for clinical use persist. This study uses real-world data from a Samsung Galaxy Watch campaign to assess smartwatch-based BP measurements. The approach examines calibration stability by comparing average systolic BP (SBP) before and after calibration, identifying factors affecting stability through regression analysis. User-level strategies are suggested to mitigate calibration instability and emphasize guideline adherence. Notably, calibration instability is found to decrease during night-time measurements and when averaging multiple readings in the same time frame. Guideline adherence is vital, particularly for the elderly, females, and individuals with hypertension. The research enhances measurement reliability through extensive datasets, shedding light on calibration stability.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.