大数据分析。人口学家的视角

Guillaume Wunsch
{"title":"大数据分析。人口学家的视角","authors":"Guillaume Wunsch","doi":"10.1177/07591063241236071","DOIUrl":null,"url":null,"abstract":"In the past few years, several demographers have pointed out the need to consider big data in population studies. Some are in favour of data-driven approaches, as statistical algorithms could discover novel patterns in the data. This paper examines some of the methods, both old and new, that have been developed for detecting patterns and associations in the data. It concludes with a discussion on how big data and big data analytics can contribute to improving the explanatory power of models in the social sciences and in demography in particular.","PeriodicalId":517384,"journal":{"name":"Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Big data analytics. A demographer’s perspective\",\"authors\":\"Guillaume Wunsch\",\"doi\":\"10.1177/07591063241236071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few years, several demographers have pointed out the need to consider big data in population studies. Some are in favour of data-driven approaches, as statistical algorithms could discover novel patterns in the data. This paper examines some of the methods, both old and new, that have been developed for detecting patterns and associations in the data. It concludes with a discussion on how big data and big data analytics can contribute to improving the explanatory power of models in the social sciences and in demography in particular.\",\"PeriodicalId\":517384,\"journal\":{\"name\":\"Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/07591063241236071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07591063241236071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,一些人口学家指出有必要在人口研究中考虑大数据。一些人赞成数据驱动的方法,因为统计算法可以发现数据中的新模式。本文探讨了为检测数据中的模式和关联而开发的一些新旧方法。最后讨论了大数据和大数据分析如何有助于提高社会科学,尤其是人口学模型的解释力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data analytics. A demographer’s perspective
In the past few years, several demographers have pointed out the need to consider big data in population studies. Some are in favour of data-driven approaches, as statistical algorithms could discover novel patterns in the data. This paper examines some of the methods, both old and new, that have been developed for detecting patterns and associations in the data. It concludes with a discussion on how big data and big data analytics can contribute to improving the explanatory power of models in the social sciences and in demography in particular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信