超卡勒锥、3-萨萨基流形和扭转空间中的校准几何

Benjamin Aslan, Spiro Karigiannis, Jesse Madnick
{"title":"超卡勒锥、3-萨萨基流形和扭转空间中的校准几何","authors":"Benjamin Aslan, Spiro Karigiannis, Jesse Madnick","doi":"10.4153/s0008414x24000282","DOIUrl":null,"url":null,"abstract":"<p>We systematically study calibrated geometry in hyperkähler cones <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C^{4n+4}$</span></span></img></span></span>, their 3-Sasakian links <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$M^{4n+3}$</span></span></img></span></span>, and the corresponding twistor spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$Z^{4n+2}$</span></span></img></span></span>, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Sp}(n)\\mathrm {U}(1)$</span></span></img></span></span>-structure <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma $</span></span></img></span></span> on the twistor space <span>Z</span>. We observe that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Re}(e^{- i \\theta } \\gamma )$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S^1$</span></span></img></span></span>-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces\",\"authors\":\"Benjamin Aslan, Spiro Karigiannis, Jesse Madnick\",\"doi\":\"10.4153/s0008414x24000282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We systematically study calibrated geometry in hyperkähler cones <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^{4n+4}$</span></span></img></span></span>, their 3-Sasakian links <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M^{4n+3}$</span></span></img></span></span>, and the corresponding twistor spaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z^{4n+2}$</span></span></img></span></span>, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Sp}(n)\\\\mathrm {U}(1)$</span></span></img></span></span>-structure <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma $</span></span></img></span></span> on the twistor space <span>Z</span>. We observe that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Re}(e^{- i \\\\theta } \\\\gamma )$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1$</span></span></img></span></span>-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们系统地研究了超凯勒锥$C^{4n+4}$、它们的3-Sasakian链接$M^{4n+3}$以及相应的扭子空间$Z^{4n+2}$中的校准几何,强调了不同空间中子实体几何之间的关系。我们的分析强调了扭子空间 Z 上一个典型的 $\mathrm {Sp}(n)\mathrm {U}(1)$ 结构 $\gamma $ 所起的作用。我们观察到 $\mathrm {Re}(e^{- i \theta } \gamma )$ 是一个 $S^1$ 族的半定标,并详细研究了它们相关的定标几何。作为应用,我们得到了复拉格朗日锥和复各向同性锥在超卡勒锥中的新特征,推广了 Ejiri-Tsukada 的一个结果。我们还推广了斯托姆关于扭转空间子满面的定理,这些扭转空间子满面在凯勒-爱因斯坦结构和近凯勒结构方面都是拉格朗日的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces

We systematically study calibrated geometry in hyperkähler cones $C^{4n+4}$, their 3-Sasakian links $M^{4n+3}$, and the corresponding twistor spaces $Z^{4n+2}$, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical $\mathrm {Sp}(n)\mathrm {U}(1)$-structure $\gamma $ on the twistor space Z. We observe that $\mathrm {Re}(e^{- i \theta } \gamma )$ is an $S^1$-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信