{"title":"超卡勒锥、3-萨萨基流形和扭转空间中的校准几何","authors":"Benjamin Aslan, Spiro Karigiannis, Jesse Madnick","doi":"10.4153/s0008414x24000282","DOIUrl":null,"url":null,"abstract":"<p>We systematically study calibrated geometry in hyperkähler cones <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C^{4n+4}$</span></span></img></span></span>, their 3-Sasakian links <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$M^{4n+3}$</span></span></img></span></span>, and the corresponding twistor spaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$Z^{4n+2}$</span></span></img></span></span>, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Sp}(n)\\mathrm {U}(1)$</span></span></img></span></span>-structure <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma $</span></span></img></span></span> on the twistor space <span>Z</span>. We observe that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {Re}(e^{- i \\theta } \\gamma )$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$S^1$</span></span></img></span></span>-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces\",\"authors\":\"Benjamin Aslan, Spiro Karigiannis, Jesse Madnick\",\"doi\":\"10.4153/s0008414x24000282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We systematically study calibrated geometry in hyperkähler cones <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C^{4n+4}$</span></span></img></span></span>, their 3-Sasakian links <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$M^{4n+3}$</span></span></img></span></span>, and the corresponding twistor spaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Z^{4n+2}$</span></span></img></span></span>, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Sp}(n)\\\\mathrm {U}(1)$</span></span></img></span></span>-structure <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma $</span></span></img></span></span> on the twistor space <span>Z</span>. We observe that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {Re}(e^{- i \\\\theta } \\\\gamma )$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240413094014785-0335:S0008414X24000282:S0008414X24000282_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^1$</span></span></img></span></span>-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x24000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calibrated geometry in hyperkähler cones, 3-Sasakian manifolds, and twistor spaces
We systematically study calibrated geometry in hyperkähler cones $C^{4n+4}$, their 3-Sasakian links $M^{4n+3}$, and the corresponding twistor spaces $Z^{4n+2}$, emphasizing the relationships between submanifold geometries in various spaces. Our analysis highlights the role played by a canonical $\mathrm {Sp}(n)\mathrm {U}(1)$-structure $\gamma $ on the twistor space Z. We observe that $\mathrm {Re}(e^{- i \theta } \gamma )$ is an $S^1$-family of semi-calibrations and make a detailed study of their associated calibrated geometries. As an application, we obtain new characterizations of complex Lagrangian and complex isotropic cones in hyperkähler cones, generalizing a result of Ejiri–Tsukada. We also generalize a theorem of Storm on submanifolds of twistor spaces that are Lagrangian with respect to both the Kähler–Einstein and nearly Kähler structures.