重要性剖面图原子基集要求的可视化

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Susi Lehtola
{"title":"重要性剖面图原子基集要求的可视化","authors":"Susi Lehtola","doi":"10.1088/2516-1075/ad31ca","DOIUrl":null,"url":null,"abstract":"Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function <inline-formula>\n<tex-math><?CDATA $|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> centered on some nucleus can be visualized by projecting <inline-formula>\n<tex-math><?CDATA $|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> on the set of numerically represented occupied orbitals <inline-formula>\n<tex-math><?CDATA $|\\psi_{i}\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> as <inline-formula>\n<tex-math><?CDATA $I_{0}(\\alpha) = \\sum_{i}\\langle\\alpha|\\psi_{i}\\rangle\\langle\\psi_{i}|\\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:munder><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:munder><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:mi>α</mml:mi><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Choosing <italic toggle=\"yes\">α</italic> to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization <inline-formula>\n<tex-math><?CDATA $I_{0}(\\alpha)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> has the important property <inline-formula>\n<tex-math><?CDATA $0\\unicode{x2A7D} I_{0}(\\alpha)\\unicode{x2A7D}1$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mn>0</mml:mn><mml:mtext>⩽</mml:mtext><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mtext>⩽</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications <inline-formula>\n<tex-math><?CDATA $I(\\alpha)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>I</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, in which the importance of a test function <inline-formula>\n<tex-math><?CDATA $\\vert \\alpha\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"estad31caieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an <italic toggle=\"yes\">a priori</italic> manner, provided that a fully numerical reference wave function is available.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Importance profiles. Visualization of atomic basis set requirements\",\"authors\":\"Susi Lehtola\",\"doi\":\"10.1088/2516-1075/ad31ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function <inline-formula>\\n<tex-math><?CDATA $|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> centered on some nucleus can be visualized by projecting <inline-formula>\\n<tex-math><?CDATA $|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> on the set of numerically represented occupied orbitals <inline-formula>\\n<tex-math><?CDATA $|\\\\psi_{i}\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> as <inline-formula>\\n<tex-math><?CDATA $I_{0}(\\\\alpha) = \\\\sum_{i}\\\\langle\\\\alpha|\\\\psi_{i}\\\\rangle\\\\langle\\\\psi_{i}|\\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:munder><mml:mo>∑</mml:mo><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:munder><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:mi>α</mml:mi><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨</mml:mo><mml:msub><mml:mi>ψ</mml:mi><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Choosing <italic toggle=\\\"yes\\\">α</italic> to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization <inline-formula>\\n<tex-math><?CDATA $I_{0}(\\\\alpha)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> has the important property <inline-formula>\\n<tex-math><?CDATA $0\\\\unicode{x2A7D} I_{0}(\\\\alpha)\\\\unicode{x2A7D}1$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mn>0</mml:mn><mml:mtext>⩽</mml:mtext><mml:msub><mml:mi>I</mml:mi><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mtext>⩽</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications <inline-formula>\\n<tex-math><?CDATA $I(\\\\alpha)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi>I</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, in which the importance of a test function <inline-formula>\\n<tex-math><?CDATA $\\\\vert \\\\alpha\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">|</mml:mo><mml:mi>α</mml:mi><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"estad31caieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an <italic toggle=\\\"yes\\\">a priori</italic> manner, provided that a fully numerical reference wave function is available.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad31ca\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad31ca","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

继理查德森及其同事在 20 世纪 60 年代初的开创性工作之后,全数值方法的最新发展为新的、紧凑的原子轨道(AO)基集提供了有趣的机会,这种基集能够最大限度地与全数值参考波函数重叠。受这一技术的启发,我们提出了一种方法,利用在完整基集极限计算的全数值波函数,直观地显示 AO 基集的重要性:以某个原子核为中心的归一化 AO 基函数 |α⟩ 的重要性,可以通过将 |α⟩ 投射到数值表示的占位轨道集 |ψi⟩ 上而直观地显示出来,即 I0(α)=∑i⟨α|ψi⟩⟨ψi|α⟩。选择α作为描述AO基础的连续参数,如高斯型轨道或斯莱特型轨道基础函数的指数,就可以直观地看到各种函数的重要性。建议的可视化 I0(α) 具有重要的特性 0⩽I0(α)⩽1,可以做出明确的解释。我们还提出了多原子应用重要性曲线 I(α) 的直接概括,其中测试函数 |α⟩ 的重要性是根据从原子最小基础投影的增加来衡量的。我们以计算前三行原子和一组化学性质不同的二原子分子的重要性剖面为例,对这些方法进行了示范。我们发现,只要有完全数值化的参考波函数,重要度剖面图就能以先验的方式直观显示特定系统对原子基集的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Importance profiles. Visualization of atomic basis set requirements
Recent developments in fully numerical methods promise interesting opportunities for new, compact atomic orbital (AO) basis sets that maximize the overlap to fully numerical reference wave functions, following the pioneering work of Richardson and coworkers from the early 1960s. Motivated by this technique, we suggest a way to visualize the importance of AO basis functions employing fully numerical wave functions computed at the complete basis set limit: the importance of a normalized AO basis function |α centered on some nucleus can be visualized by projecting |α on the set of numerically represented occupied orbitals |ψi as I0(α)=iα|ψiψi|α . Choosing α to be a continuous parameter describing the AO basis, such as the exponent of a Gaussian-type orbital or Slater-type orbital basis function, one is then able to visualize the importance of various functions. The proposed visualization I0(α) has the important property 0I0(α)1 which allows unambiguous interpretation. We also propose a straightforward generalization of the importance profile for polyatomic applications I(α) , in which the importance of a test function |α is measured as the increase in projection from the atomic minimal basis. We exemplify the methods with importance profiles computed for atoms from the first three rows, and for a set of chemically diverse diatomic molecules. We find that the importance profile offers a way to visualize the atomic basis set requirements for a given system in an a priori manner, provided that a fully numerical reference wave function is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信