{"title":"(Λ树公理的(不)依赖性","authors":"Raphael Appenzeller","doi":"10.1515/agms-2023-0106","DOIUrl":null,"url":null,"abstract":"A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tree is a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>-metric space satisfying three axioms (1), (2), and (3). We give a characterization of those ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which axioms (1) and (2) imply axiom (3). As a special case, it follows that for the important class of ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> that satisfy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda =2\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>, (3) follows from (1) and (2). For some ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:math> <jats:tex-math>\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that axiom (2) is independent of axioms (1) and (3) and ask whether this holds for all ordered abelian groups. Part of this work has been formalized in the proof assistant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2023-0106_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"sans-serif\">Lean</m:mi> </m:math> <jats:tex-math>{\\mathsf{Lean}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"12 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(In)dependence of the axioms of Λ-trees\",\"authors\":\"Raphael Appenzeller\",\"doi\":\"10.1515/agms-2023-0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tree is a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>-metric space satisfying three axioms (1), (2), and (3). We give a characterization of those ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> for which axioms (1) and (2) imply axiom (3). As a special case, it follows that for the important class of ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula> that satisfy <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda =2\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>, (3) follows from (1) and (2). For some ordered abelian groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:math> <jats:tex-math>\\\\Lambda </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that axiom (2) is independent of axioms (1) and (3) and ask whether this holds for all ordered abelian groups. Part of this work has been formalized in the proof assistant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2023-0106_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"sans-serif\\\">Lean</m:mi> </m:math> <jats:tex-math>{\\\\mathsf{Lean}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2023-0106\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0106","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A Λ\Lambda -tree is a Λ\Lambda -metric space satisfying three axioms (1), (2), and (3). We give a characterization of those ordered abelian groups Λ\Lambda for which axioms (1) and (2) imply axiom (3). As a special case, it follows that for the important class of ordered abelian groups Λ\Lambda that satisfy Λ=2Λ\Lambda =2\Lambda , (3) follows from (1) and (2). For some ordered abelian groups Λ\Lambda , we show that axiom (2) is independent of axioms (1) and (3) and ask whether this holds for all ordered abelian groups. Part of this work has been formalized in the proof assistant Lean{\mathsf{Lean}}.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.