Charly Billaud, Amanda G. Wood, Daniel Griffiths-King, Klaus Kessler, Evangeline Wassmer, Elaine Foley, Sukhvir K. Wright
{"title":"利用脑磁图将小儿自身免疫性脑炎的大脑网络与认知联系起来","authors":"Charly Billaud, Amanda G. Wood, Daniel Griffiths-King, Klaus Kessler, Evangeline Wassmer, Elaine Foley, Sukhvir K. Wright","doi":"10.1101/2024.04.04.24305194","DOIUrl":null,"url":null,"abstract":"Paediatric autoimmune encephalitis (e.g., acute disseminated encephalomyelitis, N-methyl-D-aspartate receptor antibody encephalitis) is an inflammatory brain disease that causes cognitive deficits, psychiatric symptoms, seizures, MRI, and EEG abnormalities. Patients can continue to experience residual cognitive difficulties months to years after the acute illness. Magnetoencephalography (MEG) can examine neural changes in the absence of frank structural abnormalities and may help identify factors predicting children at risk of long-term cognitive deficits. We predicted that theta and delta brain functional connectivity networks would be associated with processing speed and working memory in children with autoimmune encephalitis.","PeriodicalId":501549,"journal":{"name":"medRxiv - Pediatrics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking brain networks to cognition with magnetoencephalography in paediatric autoimmune encephalitis\",\"authors\":\"Charly Billaud, Amanda G. Wood, Daniel Griffiths-King, Klaus Kessler, Evangeline Wassmer, Elaine Foley, Sukhvir K. Wright\",\"doi\":\"10.1101/2024.04.04.24305194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paediatric autoimmune encephalitis (e.g., acute disseminated encephalomyelitis, N-methyl-D-aspartate receptor antibody encephalitis) is an inflammatory brain disease that causes cognitive deficits, psychiatric symptoms, seizures, MRI, and EEG abnormalities. Patients can continue to experience residual cognitive difficulties months to years after the acute illness. Magnetoencephalography (MEG) can examine neural changes in the absence of frank structural abnormalities and may help identify factors predicting children at risk of long-term cognitive deficits. We predicted that theta and delta brain functional connectivity networks would be associated with processing speed and working memory in children with autoimmune encephalitis.\",\"PeriodicalId\":501549,\"journal\":{\"name\":\"medRxiv - Pediatrics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Pediatrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.04.24305194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.04.24305194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linking brain networks to cognition with magnetoencephalography in paediatric autoimmune encephalitis
Paediatric autoimmune encephalitis (e.g., acute disseminated encephalomyelitis, N-methyl-D-aspartate receptor antibody encephalitis) is an inflammatory brain disease that causes cognitive deficits, psychiatric symptoms, seizures, MRI, and EEG abnormalities. Patients can continue to experience residual cognitive difficulties months to years after the acute illness. Magnetoencephalography (MEG) can examine neural changes in the absence of frank structural abnormalities and may help identify factors predicting children at risk of long-term cognitive deficits. We predicted that theta and delta brain functional connectivity networks would be associated with processing speed and working memory in children with autoimmune encephalitis.