热带图形曲线

IF 1.3 3区 数学 Q1 MATHEMATICS
Madhusudan Manjunath
{"title":"热带图形曲线","authors":"Madhusudan Manjunath","doi":"10.1017/prm.2024.32","DOIUrl":null,"url":null,"abstract":"<p>We study tropical line arrangements associated to a three-regular graph <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline1.png\"/></span></span> that we refer to as <span>tropical graph curves</span>. Roughly speaking, the tropical graph curve associated to <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline2.png\"/></span></span>, whose genus is <span><span><span data-mathjax-type=\"texmath\"><span>$g$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline3.png\"/></span></span>, is an arrangement of <span><span><span data-mathjax-type=\"texmath\"><span>$2g-2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline4.png\"/></span></span> lines in tropical projective space that contains <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline5.png\"/></span></span> (more precisely, the topological space associated to <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline6.png\"/></span></span>) as a deformation retract. We show the existence of tropical graph curves when the underlying graph is a three-regular, three-vertex-connected planar graph. Our method involves explicitly constructing an arrangement of lines in projective space, i.e. a graph curve whose tropicalization yields the corresponding tropical graph curve and in this case, solves a topological version of the tropical lifting problem associated to canonically embedded graph curves. We also show that the set of tropical graph curves that we construct are connected via certain local operations. These local operations are inspired by Steinitz’ theorem in polytope theory.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tropical graph curves\",\"authors\":\"Madhusudan Manjunath\",\"doi\":\"10.1017/prm.2024.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study tropical line arrangements associated to a three-regular graph <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline1.png\\\"/></span></span> that we refer to as <span>tropical graph curves</span>. Roughly speaking, the tropical graph curve associated to <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline2.png\\\"/></span></span>, whose genus is <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$g$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline3.png\\\"/></span></span>, is an arrangement of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$2g-2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline4.png\\\"/></span></span> lines in tropical projective space that contains <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline5.png\\\"/></span></span> (more precisely, the topological space associated to <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328124918952-0562:S0308210524000325:S0308210524000325_inline6.png\\\"/></span></span>) as a deformation retract. We show the existence of tropical graph curves when the underlying graph is a three-regular, three-vertex-connected planar graph. Our method involves explicitly constructing an arrangement of lines in projective space, i.e. a graph curve whose tropicalization yields the corresponding tropical graph curve and in this case, solves a topological version of the tropical lifting problem associated to canonically embedded graph curves. We also show that the set of tropical graph curves that we construct are connected via certain local operations. These local operations are inspired by Steinitz’ theorem in polytope theory.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.32\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.32","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是与三规则图 $G$ 相关的热带线排列,我们称之为热带图曲线。粗略地说,与$G$相关联的热带图曲线(其属值为$g$)是热带投影空间中包含$G$(更准确地说,是与$G$相关联的拓扑空间)的 2g-2$ 线条排列,作为变形回缩。我们证明了当底层图是三规则、三顶点连接的平面图时,热带图曲线的存在性。我们的方法涉及明确构建投影空间中的线的排列,即一条图曲线,其热带化产生相应的热带图曲线,在这种情况下,解决了与典型嵌入图曲线相关的热带提升问题的拓扑版本。我们还证明,我们构建的热带图曲线集合通过某些局部运算相连。这些局部运算的灵感来自多面体理论中的斯坦尼兹定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tropical graph curves

We study tropical line arrangements associated to a three-regular graph $G$ that we refer to as tropical graph curves. Roughly speaking, the tropical graph curve associated to $G$, whose genus is $g$, is an arrangement of $2g-2$ lines in tropical projective space that contains $G$ (more precisely, the topological space associated to $G$) as a deformation retract. We show the existence of tropical graph curves when the underlying graph is a three-regular, three-vertex-connected planar graph. Our method involves explicitly constructing an arrangement of lines in projective space, i.e. a graph curve whose tropicalization yields the corresponding tropical graph curve and in this case, solves a topological version of the tropical lifting problem associated to canonically embedded graph curves. We also show that the set of tropical graph curves that we construct are connected via certain local operations. These local operations are inspired by Steinitz’ theorem in polytope theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信