的线性行动

IF 1.3 3区 数学 Q1 MATHEMATICS
Jim Fowler, Courtney Thatcher
{"title":"的线性行动","authors":"Jim Fowler, Courtney Thatcher","doi":"10.1017/prm.2024.36","DOIUrl":null,"url":null,"abstract":"<p>For an odd prime <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline3.png\"/></span></span>, we consider free actions of <span><span><span data-mathjax-type=\"texmath\"><span>$(\\mathbb {Z}_{/{p}})^2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline4.png\"/></span></span> on <span><span><span data-mathjax-type=\"texmath\"><span>$S^{2n-1}\\times S^{2n-1}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline5.png\"/></span></span> given by linear actions of <span><span><span data-mathjax-type=\"texmath\"><span>$(\\mathbb {Z}_{/{p}})^2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline6.png\"/></span></span> on <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^{4n}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline7.png\"/></span></span>. Simple examples include a lens space cross a lens space, but <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline8.png\"/></span></span>-invariant calculations show that other quotients exist. Using the tools of Postnikov towers and surgery theory, the quotients are classified up to homotopy by the <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline9.png\"/></span></span>-invariants and up to homeomorphism by the Pontrjagin classes. We will present these results and demonstrate how to calculate the <span><span><span data-mathjax-type=\"texmath\"><span>$k$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline10.png\"/></span></span>-invariants and the Pontrjagin classes from the rotation numbers.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear actions of\",\"authors\":\"Jim Fowler, Courtney Thatcher\",\"doi\":\"10.1017/prm.2024.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an odd prime <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$p$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline3.png\\\"/></span></span>, we consider free actions of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\mathbb {Z}_{/{p}})^2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline4.png\\\"/></span></span> on <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$S^{2n-1}\\\\times S^{2n-1}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline5.png\\\"/></span></span> given by linear actions of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\mathbb {Z}_{/{p}})^2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline6.png\\\"/></span></span> on <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^{4n}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline7.png\\\"/></span></span>. Simple examples include a lens space cross a lens space, but <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline8.png\\\"/></span></span>-invariant calculations show that other quotients exist. Using the tools of Postnikov towers and surgery theory, the quotients are classified up to homotopy by the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline9.png\\\"/></span></span>-invariants and up to homeomorphism by the Pontrjagin classes. We will present these results and demonstrate how to calculate the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053638415-0645:S0308210524000362:S0308210524000362_inline10.png\\\"/></span></span>-invariants and the Pontrjagin classes from the rotation numbers.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.36\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.36","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于奇素数$p$,我们考虑$S^{2n-1}\times S^{2n-1}$上$(\mathbb {Z}_{/{p}})^2$ 的自由作用$(\mathbb {Z}_{/{p}})^2$ 由$\mathbb {R}^{4n}$ 上$(\mathbb {Z}_{/{p}})^2$ 的线性作用给出。简单的例子包括透镜空间交叉透镜空间,但 $k$ 不变的计算表明还存在其他商。利用波斯尼科夫塔和外科理论的工具,我们可以通过 $k$ 不变式对商进行同构分类,并通过庞特贾金类对商进行同构分类。我们将介绍这些结果,并演示如何根据旋转数计算 $k$ 变量和庞特贾金类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear actions of

For an odd prime $p$, we consider free actions of $(\mathbb {Z}_{/{p}})^2$ on $S^{2n-1}\times S^{2n-1}$ given by linear actions of $(\mathbb {Z}_{/{p}})^2$ on $\mathbb {R}^{4n}$. Simple examples include a lens space cross a lens space, but $k$-invariant calculations show that other quotients exist. Using the tools of Postnikov towers and surgery theory, the quotients are classified up to homotopy by the $k$-invariants and up to homeomorphism by the Pontrjagin classes. We will present these results and demonstrate how to calculate the $k$-invariants and the Pontrjagin classes from the rotation numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信