{"title":"螺线管 Lipschitz 截断的另一种方法","authors":"Stefan Schiffer","doi":"10.1017/prm.2024.38","DOIUrl":null,"url":null,"abstract":"In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. <jats:italic>J. Differ. Equ.</jats:italic> 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function <jats:inline-formula> <jats:alternatives> <jats:tex-math>$u \\in W^{1,p}(\\mathbb {R}^N;\\mathbb {R}^N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000386_inline1.png\" /> </jats:alternatives> </jats:inline-formula> that satisfies the additional constraint <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\operatorname {div} u=0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000386_inline2.png\" /> </jats:alternatives> </jats:inline-formula>, such that its modification <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tilde {u}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000386_inline3.png\" /> </jats:alternatives> </jats:inline-formula> is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. <jats:italic>Math. Models Methods Appl. Sci.</jats:italic> 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between <jats:inline-formula> <jats:alternatives> <jats:tex-math>$u$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000386_inline4.png\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\tilde {u}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000386_inline5.png\" /> </jats:alternatives> </jats:inline-formula> from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"117 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alternative approach to solenoidal Lipschitz truncation\",\"authors\":\"Stefan Schiffer\",\"doi\":\"10.1017/prm.2024.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. <jats:italic>J. Differ. Equ.</jats:italic> 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function <jats:inline-formula> <jats:alternatives> <jats:tex-math>$u \\\\in W^{1,p}(\\\\mathbb {R}^N;\\\\mathbb {R}^N)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000386_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> that satisfies the additional constraint <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\operatorname {div} u=0$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000386_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula>, such that its modification <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\tilde {u}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000386_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. <jats:italic>Math. Models Methods Appl. Sci.</jats:italic> 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between <jats:inline-formula> <jats:alternatives> <jats:tex-math>$u$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000386_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\\\tilde {u}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000386_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.38\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.38","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们本着 D. Breit、L. Diening 和 M. Fuchs [Solenoidal Lipschitz truncation and applications in the fluid mechanics.J. Differ.Equ.253 (2012), 1910-1942.].更确切地说,截断的目标是修改 W^{1,p}(\mathbb {R}^N;\mathbb {R}^N)$ 中的函数 $u ,该函数满足附加约束 $\operatorname {div} u=0$ ,从而使其修改后的 $\tilde {u}$ 是 Lipschitz 连续且无发散的。这种方法不同于前述著作和 D. Breit、L. Diening 和 S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs.Math.模型方法应用科学》23 (2013), 2671-2700, 第 4 节],并能从前者文章中获得关于 $u$ 与 $\tilde {u}$ 之间差值的相当强的约束。最后,我们概述了如何将这项工作中追求的方法推广到闭微分形式。
An alternative approach to solenoidal Lipschitz truncation
In this work, we present an alternative approach to obtain a solenoidal Lipschitz truncation result in the spirit of D. Breit, L. Diening and M. Fuchs [Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Equ. 253 (2012), 1910–1942.]. More precisely, the goal of the truncation is to modify a function $u \in W^{1,p}(\mathbb {R}^N;\mathbb {R}^N)$ that satisfies the additional constraint $\operatorname {div} u=0$, such that its modification $\tilde {u}$ is Lipschitz continuous and divergence-free. This approach is different to the approaches outlined in the aforementioned work and D. Breit, L. Diening and S. Schwarzacher [Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013), 2671–2700, Section 4] and is able to obtain the rather strong bound on the difference between $u$ and $\tilde {u}$ from the former article. Finally, we outline how the approach pursued in this work may be generalized to closed differential forms.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.