Temperley-Lieb代数的准遗传盖和相对主维

IF 1.3 3区 数学 Q1 MATHEMATICS
Tiago Cruz, Karin Erdmann
{"title":"Temperley-Lieb代数的准遗传盖和相对主维","authors":"Tiago Cruz, Karin Erdmann","doi":"10.1017/prm.2024.35","DOIUrl":null,"url":null,"abstract":"Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline5.png\" /> </jats:alternatives> </jats:inline-formula> and their <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline6.png\" /> </jats:alternatives> </jats:inline-formula>-analogues. Our second main result completely determines the relative dominant dimension of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline7.png\" /> </jats:alternatives> </jats:inline-formula> with respect to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q=V^{\\otimes d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline8.png\" /> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline9.png\" /> </jats:alternatives> </jats:inline-formula>-th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline10.png\" /> </jats:alternatives> </jats:inline-formula>-Schur algebras <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2,d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline11.png\" /> </jats:alternatives> </jats:inline-formula> give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline12.png\" /> </jats:alternatives> </jats:inline-formula>-Schur algebra <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline13.png\" /> </jats:alternatives> </jats:inline-formula> and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0308210524000350_inline14.png\" /> </jats:alternatives> </jats:inline-formula>-Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"52 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-hereditary covers of Temperley–Lieb algebras and relative dominant dimension\",\"authors\":\"Tiago Cruz, Karin Erdmann\",\"doi\":\"10.1017/prm.2024.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> and their <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula>-analogues. Our second main result completely determines the relative dominant dimension of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula> with respect to <jats:inline-formula> <jats:alternatives> <jats:tex-math>$Q=V^{\\\\otimes d}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline8.png\\\" /> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$d$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline9.png\\\" /> </jats:alternatives> </jats:inline-formula>-th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline10.png\\\" /> </jats:alternatives> </jats:inline-formula>-Schur algebras <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2,d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline11.png\\\" /> </jats:alternatives> </jats:inline-formula> give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline12.png\\\" /> </jats:alternatives> </jats:inline-formula>-Schur algebra <jats:inline-formula> <jats:alternatives> <jats:tex-math>$S(2, d)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline13.png\\\" /> </jats:alternatives> </jats:inline-formula> and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a <jats:inline-formula> <jats:alternatives> <jats:tex-math>$q$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0308210524000350_inline14.png\\\" /> </jats:alternatives> </jats:inline-formula>-Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.35\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.35","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

表示理论和李理论中的许多联系和对偶性都可以用鲁基耶意义上的准遗传盖来解释。第一作者的最新研究表明,相对主维(和共主维)是对有限维代数的不同准遗传封面进行分类和区分的自然工具。在本文中,我们证明了具有简单保留对偶性的准遗传代数相对于特征倾斜模的直和的相对主维总是偶数或无限,而且这个同调不变式控制着具有简单保留对偶性的准遗传封面的质量。为了解决滕伯里-李卜代数问题,我们将这一结果应用于舒尔代数$S(2, d)$及其$q$类似物。我们的第二个主要结果完全确定了$S(2, d)$ 相对于$Q=V^{\otimes d}$,即自然二维模块的$d$张量幂的相对主维。作为副产品,我们推导出 $q$ -Schur 对象 $S(2,d)$ 的 Ringel 对偶产生了 Temperley-Lieb 对象的准遗传盖。此外,我们精确地得到了当 Temperley-Lieb 代数与 $q$ -Schur 代数 $S(2,d)$的 Ringel 对偶的莫里塔等价时,以及当这两个代数不等价时,它们离莫里塔等价有多远。这些结果与积分设定是相容的,我们用它们来推导出,整数上劳伦多项式环上的 $q$ -Schur 代数的 Ringel 对偶与某个投影模是积分 Temperley-Lieb 代数的最佳准继承盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-hereditary covers of Temperley–Lieb algebras and relative dominant dimension
Many connections and dualities in representation theory and Lie theory can be explained using quasi-hereditary covers in the sense of Rouquier. Recent work by the first-named author shows that relative dominant (and codominant) dimensions are natural tools to classify and distinguish distinct quasi-hereditary covers of a finite-dimensional algebra. In this paper, we prove that the relative dominant dimension of a quasi-hereditary algebra, possessing a simple preserving duality, with respect to a direct summand of the characteristic tilting module is always an even number or infinite and that this homological invariant controls the quality of quasi-hereditary covers that possess a simple preserving duality. To resolve the Temperley–Lieb algebras, we apply this result to the class of Schur algebras $S(2, d)$ and their $q$ -analogues. Our second main result completely determines the relative dominant dimension of $S(2, d)$ with respect to $Q=V^{\otimes d}$ , the $d$ -th tensor power of the natural two-dimensional module. As a byproduct, we deduce that Ringel duals of $q$ -Schur algebras $S(2,d)$ give rise to quasi-hereditary covers of Temperley–Lieb algebras. Further, we obtain precisely when the Temperley–Lieb algebra is Morita equivalent to the Ringel dual of the $q$ -Schur algebra $S(2, d)$ and precisely how far these two algebras are from being Morita equivalent, when they are not. These results are compatible with the integral setup, and we use them to deduce that the Ringel dual of a $q$ -Schur algebra over the ring of Laurent polynomials over the integers together with some projective module is the best quasi-hereditary cover of the integral Temperley–Lieb algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信