布尔干-布雷齐斯-米罗内斯库公式有效性的苛刻条件

IF 1.3 3区 数学 Q1 MATHEMATICS
Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari
{"title":"布尔干-布雷齐斯-米罗内斯库公式有效性的苛刻条件","authors":"Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari","doi":"10.1017/prm.2024.47","DOIUrl":null,"url":null,"abstract":"<p>Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each <span><span><span data-mathjax-type=\"texmath\"><span>$u\\in L^2(\\mathbb {R}^N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline1.png\"/></span></span>, are defined as the double integrals of weighted, squared difference quotients of <span><span><span data-mathjax-type=\"texmath\"><span>$u$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline2.png\"/></span></span>. Given a family of weights <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline3.png\"/></span></span>, <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\in (0,\\,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline4.png\"/></span></span>, we devise sufficient and necessary conditions on <span><span><span data-mathjax-type=\"texmath\"><span>$\\{\\rho _{\\varepsilon} \\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline5.png\"/></span></span> for the associated nonlocal functionals to converge as <span><span><span data-mathjax-type=\"texmath\"><span>$\\varepsilon \\to 0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline6.png\"/></span></span> to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp conditions for the validity of the Bourgain–Brezis–Mironescu formula\",\"authors\":\"Elisa Davoli, Giovanni Di Fratta, Valerio Pagliari\",\"doi\":\"10.1017/prm.2024.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$u\\\\in L^2(\\\\mathbb {R}^N)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline1.png\\\"/></span></span>, are defined as the double integrals of weighted, squared difference quotients of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$u$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline2.png\\\"/></span></span>. Given a family of weights <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{\\\\rho _{\\\\varepsilon} \\\\}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline3.png\\\"/></span></span>, <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varepsilon \\\\in (0,\\\\,1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline4.png\\\"/></span></span>, we devise sufficient and necessary conditions on <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\{\\\\rho _{\\\\varepsilon} \\\\}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline5.png\\\"/></span></span> for the associated nonlocal functionals to converge as <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varepsilon \\\\to 0$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240416053606689-0049:S0308210524000477:S0308210524000477_inline6.png\\\"/></span></span> to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.47\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.47","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

继布尔甘(Bourgain)、布雷齐斯(Brezis)和米罗内斯库(Mironescu)的开创性论文之后,我们将重点放在一些非局部函数的渐近行为上,对于 L^2(\mathbb {R}^N)$ 中的每个 $u$,这些函数被定义为 $u$ 的加权平方差商的双积分。给定一个权值系列 $\{\rho _{\varepsilon}\$\varepsilon 在(0,\,1)$ 中,我们设计了关于 $\{rho _{\varepsilon} 的充分和必要条件。}\相关的非局部函数随着 $\varepsilon \to 0$ 收敛到迪里希特积分的变体上。最后,我们对我们的结果与现有文献进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp conditions for the validity of the Bourgain–Brezis–Mironescu formula

Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the asymptotic behaviour of some nonlocal functionals that, for each $u\in L^2(\mathbb {R}^N)$, are defined as the double integrals of weighted, squared difference quotients of $u$. Given a family of weights $\{\rho _{\varepsilon} \}$, $\varepsilon \in (0,\,1)$, we devise sufficient and necessary conditions on $\{\rho _{\varepsilon} \}$ for the associated nonlocal functionals to converge as $\varepsilon \to 0$ to a variant of the Dirichlet integral. Finally, some comparison between our result and the existing literature is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信