{"title":"一类五次多项式微分系统的全局中心","authors":"Leonardo P. C. da Cruz, Jaume Llibre","doi":"10.1017/prm.2024.43","DOIUrl":null,"url":null,"abstract":"A centre of a differential system in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is an equilibrium point <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline2.png\" /> </jats:alternatives> </jats:inline-formula> having a neighbourhood <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline3.png\" /> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U\\setminus \\{p\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline4.png\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. A centre <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline5.png\" /> </jats:alternatives> </jats:inline-formula> is global when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2\\setminus \\{p\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\begin{align*} \\dot{x}= y,\\quad \\dot{y}={-}x+a_{05}\\,y^5+a_{14}\\,x\\,y^4+a_{23}\\,x^2\\,y^3+a_{32}\\,x^3\\,y^2+a_{41}\\,x^4\\,y+a_{50}\\,x^5, \\end{align*}</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S030821052400043X_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline7.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"119 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global centres in a class of quintic polynomial differential systems\",\"authors\":\"Leonardo P. C. da Cruz, Jaume Llibre\",\"doi\":\"10.1017/prm.2024.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centre of a differential system in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> is an equilibrium point <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> having a neighbourhood <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U\\\\setminus \\\\{p\\\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. A centre <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> is global when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2\\\\setminus \\\\{p\\\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\begin{align*} \\\\dot{x}= y,\\\\quad \\\\dot{y}={-}x+a_{05}\\\\,y^5+a_{14}\\\\,x\\\\,y^4+a_{23}\\\\,x^2\\\\,y^3+a_{32}\\\\,x^3\\\\,y^2+a_{41}\\\\,x^4\\\\,y+a_{50}\\\\,x^5, \\\\end{align*}</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S030821052400043X_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.43\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.43","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global centres in a class of quintic polynomial differential systems
A centre of a differential system in the plane $ {\mathbb {R}}^2$ is an equilibrium point $p$ having a neighbourhood $U$ such that $U\setminus \{p\}$ is filled with periodic orbits. A centre $p$ is global when $ {\mathbb {R}}^2\setminus \{p\}$ is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems \begin{align*} \dot{x}= y,\quad \dot{y}={-}x+a_{05}\,y^5+a_{14}\,x\,y^4+a_{23}\,x^2\,y^3+a_{32}\,x^3\,y^2+a_{41}\,x^4\,y+a_{50}\,x^5, \end{align*}in the plane $ {\mathbb {R}}^2$.
期刊介绍:
A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations.
An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.