一类五次多项式微分系统的全局中心

IF 1.3 3区 数学 Q1 MATHEMATICS
Leonardo P. C. da Cruz, Jaume Llibre
{"title":"一类五次多项式微分系统的全局中心","authors":"Leonardo P. C. da Cruz, Jaume Llibre","doi":"10.1017/prm.2024.43","DOIUrl":null,"url":null,"abstract":"A centre of a differential system in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline1.png\" /> </jats:alternatives> </jats:inline-formula> is an equilibrium point <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline2.png\" /> </jats:alternatives> </jats:inline-formula> having a neighbourhood <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline3.png\" /> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U\\setminus \\{p\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline4.png\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. A centre <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline5.png\" /> </jats:alternatives> </jats:inline-formula> is global when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2\\setminus \\{p\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline6.png\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\begin{align*} \\dot{x}= y,\\quad \\dot{y}={-}x+a_{05}\\,y^5+a_{14}\\,x\\,y^4+a_{23}\\,x^2\\,y^3+a_{32}\\,x^3\\,y^2+a_{41}\\,x^4\\,y+a_{50}\\,x^5, \\end{align*}</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S030821052400043X_eqnU1.png\" /> </jats:alternatives> </jats:disp-formula>in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400043X_inline7.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"119 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global centres in a class of quintic polynomial differential systems\",\"authors\":\"Leonardo P. C. da Cruz, Jaume Llibre\",\"doi\":\"10.1017/prm.2024.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centre of a differential system in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> is an equilibrium point <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> having a neighbourhood <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> such that <jats:inline-formula> <jats:alternatives> <jats:tex-math>$U\\\\setminus \\\\{p\\\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. A centre <jats:inline-formula> <jats:alternatives> <jats:tex-math>$p$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> is global when <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2\\\\setminus \\\\{p\\\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems <jats:disp-formula> <jats:alternatives> <jats:tex-math>\\\\begin{align*} \\\\dot{x}= y,\\\\quad \\\\dot{y}={-}x+a_{05}\\\\,y^5+a_{14}\\\\,x\\\\,y^4+a_{23}\\\\,x^2\\\\,y^3+a_{32}\\\\,x^3\\\\,y^2+a_{41}\\\\,x^4\\\\,y+a_{50}\\\\,x^5, \\\\end{align*}</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" mimetype=\\\"image\\\" position=\\\"float\\\" xlink:href=\\\"S030821052400043X_eqnU1.png\\\" /> </jats:alternatives> </jats:disp-formula>in the plane <jats:inline-formula> <jats:alternatives> <jats:tex-math>$ {\\\\mathbb {R}}^2$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S030821052400043X_inline7.png\\\" /> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.43\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.43","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

平面 $ {\mathbb {R}}^2$ 中微分系统的中心是一个平衡点 $p$,它有一个邻域 $U$,使得 $Usetminus \{p\}$充满了周期性的轨道。当 $ {\mathbb {R}}^2\setminus \{p\}$ 充满周期性轨道时,中心 $p$ 是全局的。一般来说,对于给定类别的微分系统,区分中心和焦点是一个难题,而区分中心内部的全局中心也很困难。本文的目标是对以下一类五次多项式微分系统的中心和全局中心进行分类 \begin{align*}\dot{x}= y,quad \dot{y}={-}x+a_{05}\,y^5+a_{14}\,x\,y^4+a_{23}\,x^2\,y^3+a_{32}\,x^3\,y^2+a_{41}\,x^4\,y+a_{50}\,x^5, \end{align*} 在平面 $ {\mathbb {R}}^2$ 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global centres in a class of quintic polynomial differential systems
A centre of a differential system in the plane $ {\mathbb {R}}^2$ is an equilibrium point $p$ having a neighbourhood $U$ such that $U\setminus \{p\}$ is filled with periodic orbits. A centre $p$ is global when $ {\mathbb {R}}^2\setminus \{p\}$ is filled with periodic orbits. In general, it is a difficult problem to distinguish the centres from the foci for a given class of differential systems, and also it is difficult to distinguish the global centres inside the centres. The goal of this paper is to classify the centres and the global centres of the following class of quintic polynomial differential systems \begin{align*} \dot{x}= y,\quad \dot{y}={-}x+a_{05}\,y^5+a_{14}\,x\,y^4+a_{23}\,x^2\,y^3+a_{32}\,x^3\,y^2+a_{41}\,x^4\,y+a_{50}\,x^5, \end{align*} in the plane $ {\mathbb {R}}^2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信