Sikgyeong Choi, Jaewook Oh, Juho Lee, Woyeong Kwon, Jeonghae Lee, Inhyeok Hwang, Jongbum Park, Namsu Kim
{"title":"基于双传感器结构的加速寿命测试中内部永磁同步电机故障模式的识别","authors":"Sikgyeong Choi, Jaewook Oh, Juho Lee, Woyeong Kwon, Jeonghae Lee, Inhyeok Hwang, Jongbum Park, Namsu Kim","doi":"10.1007/s43236-024-00810-8","DOIUrl":null,"url":null,"abstract":"<p>Recently, the permanent magnet synchronous motors (PMSMs) are considered to be one of the best options for electrical motor due to their high power density and efficiency for various applications including industrial robot and smart mobility. However, the safety and reliability of the PMSM have not been verified sufficiently when compared to the conventional induction motor. The failure of electric motor can lead to catastrophic failure of entire system, so it is important to detect potential failure modes or signs in advance. In this paper, an accelerated life test was carried out to induce and investigate the failure modes of PMSM and various signals were monitored to detect the types of failure modes during the test. The shaft of the motor was radially loaded to accelerate the failure of PMSM. The phase current, temperature, displacement of the shaft, and vibration were monitored to estimate the health state of the motor. As a result, the bearing and the shaft were the most vulnerable components under radially loaded condition. Also, it is proved that the different failure modes can be successfully detected and classified by monitoring the phase current and vibration signal.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"222 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of failure modes in interior permanent magnet synchronous motor under accelerated life test based on dual sensor architecture\",\"authors\":\"Sikgyeong Choi, Jaewook Oh, Juho Lee, Woyeong Kwon, Jeonghae Lee, Inhyeok Hwang, Jongbum Park, Namsu Kim\",\"doi\":\"10.1007/s43236-024-00810-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the permanent magnet synchronous motors (PMSMs) are considered to be one of the best options for electrical motor due to their high power density and efficiency for various applications including industrial robot and smart mobility. However, the safety and reliability of the PMSM have not been verified sufficiently when compared to the conventional induction motor. The failure of electric motor can lead to catastrophic failure of entire system, so it is important to detect potential failure modes or signs in advance. In this paper, an accelerated life test was carried out to induce and investigate the failure modes of PMSM and various signals were monitored to detect the types of failure modes during the test. The shaft of the motor was radially loaded to accelerate the failure of PMSM. The phase current, temperature, displacement of the shaft, and vibration were monitored to estimate the health state of the motor. As a result, the bearing and the shaft were the most vulnerable components under radially loaded condition. Also, it is proved that the different failure modes can be successfully detected and classified by monitoring the phase current and vibration signal.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"222 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00810-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00810-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Identification of failure modes in interior permanent magnet synchronous motor under accelerated life test based on dual sensor architecture
Recently, the permanent magnet synchronous motors (PMSMs) are considered to be one of the best options for electrical motor due to their high power density and efficiency for various applications including industrial robot and smart mobility. However, the safety and reliability of the PMSM have not been verified sufficiently when compared to the conventional induction motor. The failure of electric motor can lead to catastrophic failure of entire system, so it is important to detect potential failure modes or signs in advance. In this paper, an accelerated life test was carried out to induce and investigate the failure modes of PMSM and various signals were monitored to detect the types of failure modes during the test. The shaft of the motor was radially loaded to accelerate the failure of PMSM. The phase current, temperature, displacement of the shaft, and vibration were monitored to estimate the health state of the motor. As a result, the bearing and the shaft were the most vulnerable components under radially loaded condition. Also, it is proved that the different failure modes can be successfully detected and classified by monitoring the phase current and vibration signal.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.