{"title":"黎曼曲面上斯特克洛夫特征值组合的形状优化","authors":"Romain Petrides","doi":"10.1007/s00209-024-03481-0","DOIUrl":null,"url":null,"abstract":"<p>We prove existence and regularity of metrics which minimize combinations of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We show that there are free boundary minimal immersions into ellipsoids parametrized by eigenvalues, such that the coordinate functions are eigenfunctions with respect to the minimal metrics. This work generalizes Fraser–Schoen’s and the author’s maximization for one eigenvalue among metrics of unit perimeter on a surface giving free boundary minimal immersions into balls. We also generalize the previous results of critical metrics for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape optimization for combinations of Steklov eigenvalues on Riemannian surfaces\",\"authors\":\"Romain Petrides\",\"doi\":\"10.1007/s00209-024-03481-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove existence and regularity of metrics which minimize combinations of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We show that there are free boundary minimal immersions into ellipsoids parametrized by eigenvalues, such that the coordinate functions are eigenfunctions with respect to the minimal metrics. This work generalizes Fraser–Schoen’s and the author’s maximization for one eigenvalue among metrics of unit perimeter on a surface giving free boundary minimal immersions into balls. We also generalize the previous results of critical metrics for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03481-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03481-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Shape optimization for combinations of Steklov eigenvalues on Riemannian surfaces
We prove existence and regularity of metrics which minimize combinations of Steklov eigenvalues over metrics of unit perimeter on a surface with boundary. We show that there are free boundary minimal immersions into ellipsoids parametrized by eigenvalues, such that the coordinate functions are eigenfunctions with respect to the minimal metrics. This work generalizes Fraser–Schoen’s and the author’s maximization for one eigenvalue among metrics of unit perimeter on a surface giving free boundary minimal immersions into balls. We also generalize the previous results of critical metrics for one eigenvalue to any combination of eigenvalues from target balls to target ellipsoids.