Wei Li, Mengjun Li, Ruilin Ji, Chaochang Che, Hanyu Zhao
{"title":"基于状态轨迹控制的 LLC-C 谐振转换器可变结构平滑开关策略","authors":"Wei Li, Mengjun Li, Ruilin Ji, Chaochang Che, Hanyu Zhao","doi":"10.1007/s43236-024-00803-7","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a smooth mode-switching method based on state trajectory control to suppress overshoot and to shorten switching time during the mode switching of LLC-C resonant converters. First, the resonant tank trajectories of the LLC and LCCL are analyzed. Second, through a transformation of the resonant tank trajectory, the optimal trajectory of the resonant tank switching is drawn. Then the switching optimization cycle time is calculated by a diagram of the optimal trajectory. Thus, the PWM conversion to the optimization cycle is controlled directly when the switching signal comes. By this control method, a smooth transition of the resonant tank voltage and current between the two modes is achieved. At last, a prototype with a rated power of 500 W is built to check the feasibility and effectiveness of the proposed switching method. Experiment results show that the current surge of the resonant tank is reduced from 12.3 to 8.6 A when the state trajectory control is applied. The voltage surge of the second resonant capacitor in parallel is reduced from 906 to 712 V. Meanwhile, the switching time is shortened by 0.21 ms, which speeds up the switching process.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable structure smooth switching strategy of LLC-C resonant converter based on state trajectory control\",\"authors\":\"Wei Li, Mengjun Li, Ruilin Ji, Chaochang Che, Hanyu Zhao\",\"doi\":\"10.1007/s43236-024-00803-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a smooth mode-switching method based on state trajectory control to suppress overshoot and to shorten switching time during the mode switching of LLC-C resonant converters. First, the resonant tank trajectories of the LLC and LCCL are analyzed. Second, through a transformation of the resonant tank trajectory, the optimal trajectory of the resonant tank switching is drawn. Then the switching optimization cycle time is calculated by a diagram of the optimal trajectory. Thus, the PWM conversion to the optimization cycle is controlled directly when the switching signal comes. By this control method, a smooth transition of the resonant tank voltage and current between the two modes is achieved. At last, a prototype with a rated power of 500 W is built to check the feasibility and effectiveness of the proposed switching method. Experiment results show that the current surge of the resonant tank is reduced from 12.3 to 8.6 A when the state trajectory control is applied. The voltage surge of the second resonant capacitor in parallel is reduced from 906 to 712 V. Meanwhile, the switching time is shortened by 0.21 ms, which speeds up the switching process.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00803-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00803-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种基于状态轨迹控制的平滑模式切换方法,以抑制 LLC-C 谐振转换器模式切换过程中的过冲并缩短切换时间。首先,分析了 LLC 和 LCCL 的谐振槽轨迹。其次,通过对谐振槽轨迹的变换,得出谐振槽开关的最优轨迹。然后,通过最佳轨迹图计算出开关优化周期时间。这样,当开关信号到来时,就可以直接控制 PWM 向优化周期的转换。通过这种控制方法,实现了谐振槽电压和电流在两种模式之间的平滑过渡。最后,我们制作了一个额定功率为 500 W 的原型,以检验所提出的开关方法的可行性和有效性。实验结果表明,采用状态轨迹控制时,谐振槽的电流浪涌从 12.3 A 减小到 8.6 A。同时,开关时间缩短了 0.21 毫秒,加快了开关过程。
Variable structure smooth switching strategy of LLC-C resonant converter based on state trajectory control
This paper proposes a smooth mode-switching method based on state trajectory control to suppress overshoot and to shorten switching time during the mode switching of LLC-C resonant converters. First, the resonant tank trajectories of the LLC and LCCL are analyzed. Second, through a transformation of the resonant tank trajectory, the optimal trajectory of the resonant tank switching is drawn. Then the switching optimization cycle time is calculated by a diagram of the optimal trajectory. Thus, the PWM conversion to the optimization cycle is controlled directly when the switching signal comes. By this control method, a smooth transition of the resonant tank voltage and current between the two modes is achieved. At last, a prototype with a rated power of 500 W is built to check the feasibility and effectiveness of the proposed switching method. Experiment results show that the current surge of the resonant tank is reduced from 12.3 to 8.6 A when the state trajectory control is applied. The voltage surge of the second resonant capacitor in parallel is reduced from 906 to 712 V. Meanwhile, the switching time is shortened by 0.21 ms, which speeds up the switching process.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.